Advertisement

A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re)

  • Juan F. Van der Maelen
  • Javier A. CabezaEmail author
Regular Article

Abstract

The M–M, M–H, and M–CO bonding interactions existing in the group 7 transition metal carbonyl complexes [M2(CO)10] and [M3(μ-H)3(CO)12] (M = Mn, Tc, Re) have been theoretically studied under the perspective of the Quantum Theory of Atoms in Molecules (QTAIM). Several local and integral topological properties of the electron density involved in these interactions, as well as the source function (SF) and the electron localization function, have been computed. The results confirm that the metal atoms in the binuclear [M2(CO)10] complexes are connected through a localized M–M bond that implicates little electron density (it increases from M = Mn to Tc and Re). On the other hand, such a bonding has not been found in the trinuclear [M3(μ-H)3(CO)12] complexes, which, instead, contain a 6c6e bonding interaction delocalized over their six-membered M3(μ-H)3 ring, as revealed by the non-negligible non-bonding delocalization indexes. The existence of significant CO to M π-back-donation, slightly higher in the trinuclear clusters than in the binuclear complexes, is indicated by the M···OCO delocalization indexes and SF calculations.

Keywords

Quantum theory of atoms in molecules (QTAIM) Electron localization function (ELF) Source function (SF) Transition metal carbonyl complexes Multicenter bonding 

Notes

Acknowledgments

This work has been supported by MINECO-FEDER projects (MAT2013-40950-R and CTQ2013-40619-P) and Gobierno del Principado de Asturias grants (GRUPIN14-060 and GRUPIN14-009).

Supplementary material

214_2016_1821_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1815 kb)

References

  1. 1.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, HarlowCrossRefGoogle Scholar
  3. 3.
    Coppens P (1997) X-ray charge densities and chemical bonding. International Union of Crystallography and Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Gatti C, Macchi P (eds) (2012) Modern charge density analysis. Springer, HeidelbergGoogle Scholar
  6. 6.
    Foroutan-Nejad C, Shahbazian S, Marek R (2014) Chem Eur J 20:10140–10152CrossRefGoogle Scholar
  7. 7.
    Macchi P (2013) Crystallogr Rev 19:58–101CrossRefGoogle Scholar
  8. 8.
    Macchi P, Gillet JM, Taulelle F, Campo J, Claisere N, Lecomte C (2015) IUCr J 2:441–451CrossRefGoogle Scholar
  9. 9.
    Bader RFW (1998) J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  10. 10.
    Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633–662CrossRefGoogle Scholar
  11. 11.
    Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583–1627CrossRefGoogle Scholar
  12. 12.
    Gatti C (2005) Z Kristallogr 220:399–457Google Scholar
  13. 13.
    Coppens P, Iversen BB, Larsen FK (2005) Coord Chem Rev 249:179–195CrossRefGoogle Scholar
  14. 14.
    Ling Y, Zhang Y (2010) Ann Rep Comput Chem 6:65–77Google Scholar
  15. 15.
    Macchi P (2009) Angew Chem Int Ed 48:5793–5795CrossRefGoogle Scholar
  16. 16.
    Bader RFW, Stephens ME (1975) J Am Chem Soc 97:7391–7399CrossRefGoogle Scholar
  17. 17.
    Bytheway I, Gillespie RJ, Tang TH, Bader RFW (1995) Inorg Chem 34:2407–2414CrossRefGoogle Scholar
  18. 18.
    Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2003) Chem Eur J 9:6057–6070CrossRefGoogle Scholar
  19. 19.
    Jørgensen MRV, Hathwar VR, Bindzus N, Wahlberg N, Chen YS, Overgaard J, Iversen BB (2014) IUCr J 1:267–280CrossRefGoogle Scholar
  20. 20.
    Macchi P, Sironi A (2003) Coord Chem Rev 238:383–412CrossRefGoogle Scholar
  21. 21.
    Farrugia LJ, Evans C, Tegel M (2006) J Phys Chem A 110:7952–7961CrossRefGoogle Scholar
  22. 22.
    Farrugia LJ, Evans C, Lentz D, Roemer M (2009) J Am Chem Soc 131:1251–1268CrossRefGoogle Scholar
  23. 23.
    Van der Maelen JF, Gutiérrez-Puebla E, Monge A, García-Granda S, Resa I, Carmona E, Fernández-Díaz MT, McIntyre GJ, Pattison P, Weber HP (2007) Acta Crystallogr B 63:862–868CrossRefGoogle Scholar
  24. 24.
    Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:13429–13435CrossRefGoogle Scholar
  25. 25.
    Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) J Am Chem Soc 130:3834–3843CrossRefGoogle Scholar
  26. 26.
    Macchi P, Garlaschelli L, Sironi A (2002) J Am Chem Soc 124:14173–14184CrossRefGoogle Scholar
  27. 27.
    Bo C, Sarasa JP, Poblet JM (1993) J Phys Chem 97:6362–6366CrossRefGoogle Scholar
  28. 28.
    Low AA, Kunze KL, MacDougall PJ, Hall MB (1991) Inorg Chem 30:1079–1086CrossRefGoogle Scholar
  29. 29.
    Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366CrossRefGoogle Scholar
  30. 30.
    Van der Maelen JF, Ruiz J, García-Granda S (2005) J Theor Comput Chem 4:823–832CrossRefGoogle Scholar
  31. 31.
    Wolstenholme DJ, Traboulsee KT, Decken A, McGrady GS (2010) Organometallics 29:5769–5772CrossRefGoogle Scholar
  32. 32.
    Popov AA, Dunsch L (2009) Chem Eur J 15:9707–9729CrossRefGoogle Scholar
  33. 33.
    Varadwaj PR, Marques HM (2010) Theor Chem Acc 127:711–725CrossRefGoogle Scholar
  34. 34.
    Reisinger A, Trapp N, Krossing I, Altmannshofer S, Herz V, Presnitz M, Scherer W (2007) Angew Chem Int Ed 46:8295–8298CrossRefGoogle Scholar
  35. 35.
    Himmel D, Trapp N, Krossing I, Altmannshofer S, Herz V, Eickerling G, Scherer W (2008) Angew Chem Int Ed 47:7798–7801CrossRefGoogle Scholar
  36. 36.
    Poulsen RD, Bentien A, Chevalier M, Iversen BB (2005) J Am Chem Soc 127:9156–9166CrossRefGoogle Scholar
  37. 37.
    Abramov YA, Brammer L, Klooster WT, Bullock RM (1998) Inorg Chem 37:6317–6328CrossRefGoogle Scholar
  38. 38.
    Batool M, Martin TA, Algarra AG, George MW, Macgregor SA, Mahon MF, Whittlesey MK (2012) Organometallics 31:4971–4979CrossRefGoogle Scholar
  39. 39.
    Nuss H, Claiser N, Pillet S, Lugan N, Despagnet-Ayoub E, Etienne M, Lecomte C (2012) Dalton Trans 41:6598–6601CrossRefGoogle Scholar
  40. 40.
    Gagliardi L (2014) In: Frenking G, Shaik S (eds) The chemical bond: chemical bonding across the periodic table. Wiley-VCH, Weinheim, pp 253–268Google Scholar
  41. 41.
    Merino G, Donald KJ, D’Acchioli JS, Hoffmann R (2007) J Am Chem Soc 129:15295–15302CrossRefGoogle Scholar
  42. 42.
    Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Science 310:844–847CrossRefGoogle Scholar
  43. 43.
    La Macchia G, Li Manni G, Todorova TK, Brynda M, Aquilante F, Roos BO, Gagliardi L (2010) Inorg Chem 49:5216–5222CrossRefGoogle Scholar
  44. 44.
    Brynda M, Gagliardi L, Roos BO (2009) Chem Phys Lett 471:1–10CrossRefGoogle Scholar
  45. 45.
    Kreisel KA, Yap GPA, Dmitrenko O, Landis CR, Theopold KH (2007) J Am Chem Soc 129:14162–14163CrossRefGoogle Scholar
  46. 46.
    Noor A, Wagner FR, Kempe R (2008) Angew Chem Int Ed 47:7246–7249CrossRefGoogle Scholar
  47. 47.
    Tsai YC, Hsu CW, Yu JSK, Lee GH, Wang Y, Kuo TS (2008) Angew Chem Int Ed 47:7250–7253CrossRefGoogle Scholar
  48. 48.
    Hsu CW, Yu JSK, Yen CH, Lee GH, Wang Y, Tsai YC (2008) Angew Chem Int Ed 47:9933–9936CrossRefGoogle Scholar
  49. 49.
    Horvath S, Gorelsky SI, Gambarotta S, Korobkov I (2008) Angew Chem Int Ed 47:9937–9940CrossRefGoogle Scholar
  50. 50.
    Weinhold F, Landis CR (2007) Science 316:61–63CrossRefGoogle Scholar
  51. 51.
    Wagner FR, Noor A, Kempe R (2009) Nat Chem 1:529–536CrossRefGoogle Scholar
  52. 52.
    Hall MB (1980) J Am Chem Soc 102:2104–2106CrossRefGoogle Scholar
  53. 53.
    Kok RA, Hall MB (1983) Inorg Chem 22:728–734CrossRefGoogle Scholar
  54. 54.
    Chisholm MN, Davidson ER, Huffmann JC, Quinlan KB (2001) J Am Chem Soc 123:9652–9664CrossRefGoogle Scholar
  55. 55.
    Chisholm MN, Davidson ER, Quinlan KB (2002) J Am Chem Soc 124:15351–15358CrossRefGoogle Scholar
  56. 56.
    Connor JA, Pilcher G, Skinner HA, Chisholm MH, Cotton FA (1978) J Am Chem Soc 100:7738–7739CrossRefGoogle Scholar
  57. 57.
    Gagliardi L, Roos BO (2003) Inorg Chem 42:1599–1603CrossRefGoogle Scholar
  58. 58.
    Saito K, Nakao Y, Sato H, Sakaki S (2006) J Phys Chem A 110:9710–9717CrossRefGoogle Scholar
  59. 59.
    Roos BO, Borin AC, Gagliardi L (2007) Angew Chem Int Ed 46:1469–1472CrossRefGoogle Scholar
  60. 60.
    Brown DA, Chambers WJ, Fitzpatrick NJ, Rawlinson SRM (1971) J Chem Soc A 720–725Google Scholar
  61. 61.
    Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1995) Inorg Chem 34:3425–3432CrossRefGoogle Scholar
  62. 62.
    Weck PF, Sergeeva AP, Kim E, Boldyrev AI, Czerwinski KR (2011) Inorg Chem 50:1039–1046CrossRefGoogle Scholar
  63. 63.
    Gatti C, Lasi D (2007) Faraday Discuss 135:55–78CrossRefGoogle Scholar
  64. 64.
    Van der Maelen JF, García-Granda S, Cabeza JA (2011) Comput Theor Chem 968:55–63CrossRefGoogle Scholar
  65. 65.
    Llusar R, Beltrán A, Andrés J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460–9466CrossRefGoogle Scholar
  66. 66.
    Farrugia LJ, Senn HM (2010) J Phys Chem A 114:13418–13433CrossRefGoogle Scholar
  67. 67.
    Farrugia LJ, Macchi P (2012) Struct Bonding 146:127–158 Google Scholar
  68. 68.
    Van der Maelen JF, Cabeza JA (2012) Inorg Chem 51:7384–7391CrossRefGoogle Scholar
  69. 69.
    Macchi P, Krawczuk A (2015) Comput Theor Chem 1053:165–172CrossRefGoogle Scholar
  70. 70.
    Gatti C (2013) Phys Scrip 87:048102CrossRefGoogle Scholar
  71. 71.
    Curado N, Carrasco M, Álvarez E, Maya C, Peloso R, Rodríguez A, López-Serrano J, Carmona E (2015) J Am Chem Soc 137:12378–12387CrossRefGoogle Scholar
  72. 72.
    Gervasio G, Bianchi R, Marabello D (2005) Chem Phys Lett 407:18–22CrossRefGoogle Scholar
  73. 73.
    Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) J Am Chem Soc 121:10428–10429CrossRefGoogle Scholar
  74. 74.
    Feliz M, Llusar R, Andrés J, Berski S, Silvi B (2002) New J Chem 26:844–850CrossRefGoogle Scholar
  75. 75.
    Bytheway I, Griffith CS, Koutsantonis GA, Skelton BW, White AH (2007) Eur J Inorg Chem 3240–3246Google Scholar
  76. 76.
    Niskanen M, Hirva P, Haukka M (2009) J Chem Theory Comput 5:1084–1090CrossRefGoogle Scholar
  77. 77.
    Cabeza JA, Van der Maelen JF, García-Granda S (2009) Organometallics 28:3666–3672CrossRefGoogle Scholar
  78. 78.
    Gervasio G, Marabello D, Bianchi R, Forni A (2010) J Phys Chem A 114:9368–9373CrossRefGoogle Scholar
  79. 79.
    Dinda S, Samuelson AG (2012) Chem Eur J 18:3032–3042CrossRefGoogle Scholar
  80. 80.
    Farrugia LJ, Evans C, Senn HM, Aänninen MM, Sillanpää R (2012) Organometallics 31:2559–2570CrossRefGoogle Scholar
  81. 81.
    Bianchi R, Gervasio G, Marabello D (1998) Chem Commun 1535–1536Google Scholar
  82. 82.
    Ponec R, Yuzhakov G, Sundberg MR (2005) J Comput Chem 26:447–454CrossRefGoogle Scholar
  83. 83.
    Ponec R, Yuzhakov G (2007) Theor Chem Acc 118:791–797CrossRefGoogle Scholar
  84. 84.
    Bertini L, Fantucci G, De Gioia L (2011) Organometallics 30:487–498CrossRefGoogle Scholar
  85. 85.
    Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, Stalke D (2008) Angew Chem Int Ed 47:4321–4325CrossRefGoogle Scholar
  86. 86.
    Götz K, Kaupp M, Braunschweig H, Stalke D (2009) Chem Eur J 15:623–632CrossRefGoogle Scholar
  87. 87.
    Ponec R (2015) Comput Theor Chem 1053:195–213CrossRefGoogle Scholar
  88. 88.
    Wu LC, Hsu CW, Chuang YC, Lee GH, Tsai YC, Wang Y (2011) J Phys Chem A 115:12602–12615CrossRefGoogle Scholar
  89. 89.
    Gatti C (2012) Struct & Bonding 147:193–286CrossRefGoogle Scholar
  90. 90.
    Macchi P, Donghi D, Sironi A (2005) J Am Chem Soc 127:16494–16504CrossRefGoogle Scholar
  91. 91.
    Foroutan-Nejad C, Vicha J, Marek R, Patzschke M (2015) Phys Chem Chem Phys 17:24182–24192CrossRefGoogle Scholar
  92. 92.
    Li X, Huo S, Zeng Y, Sun Z, Zheng S, Meng L (2013) Organometallics 32:1060–1066CrossRefGoogle Scholar
  93. 93.
    Bertolotti F, Forni A, Gervasio G, Marabello D, Diana E (2012) Polyhedron 42:118–127CrossRefGoogle Scholar
  94. 94.
    Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel HJ, Reiher M (2007) J Chem Theory Comput 3:2182–2197CrossRefGoogle Scholar
  95. 95.
    Eickerling G, Reiher M (2008) J Chem Theory Comput 4:286–296CrossRefGoogle Scholar
  96. 96.
    Hebben N, Himmel HJ, Eickerling G, Hermann C, Reiher M, Herz V, Presnitz M, Scherer W (2007) Chem Eur J 13:10078–10087CrossRefGoogle Scholar
  97. 97.
    Reiher M, Wolf A (2009) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  98. 98.
    Fux S, Reiher M (2012) Struct Bonding 147:99–142CrossRefGoogle Scholar
  99. 99.
    Ponec R, Bučinský L, Gatti C (2010) J Chem Theory Comput 6:3113–3121CrossRefGoogle Scholar
  100. 100.
    Sablon N, Mastalerz R, De Proft F, Geerlings P, Reiher M (2010) Theor Chem Acc 127:195–202CrossRefGoogle Scholar
  101. 101.
    Schwerdtfeger P (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley-VCH, Weinheim, Germany, pp 383–404CrossRefGoogle Scholar
  102. 102.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) GAUSSIAN09, Revision B.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  103. 103.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  104. 104.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  105. 105.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  106. 106.
    Huzinaga S, Miguel B (1990) Chem Phys Lett 175:289–291CrossRefGoogle Scholar
  107. 107.
    Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260–264CrossRefGoogle Scholar
  108. 108.
    van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156CrossRefGoogle Scholar
  109. 109.
    Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca-Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2012) ADF2012, Revision 01d, SCM, Theoretical Chemistry. Vrije Universiteit, AmsterdamGoogle Scholar
  110. 110.
    Farrugia LJ, Mallinson PR, Stewart B (2003) Acta Crystallogr B 59:234–247CrossRefGoogle Scholar
  111. 111.
    Bailey MF, Dahl LF (1965) Inorg Chem 4:1140–1145CrossRefGoogle Scholar
  112. 112.
    Churchill MR, Amoh KN, Wasserman HJ (1981) Inorg Chem 20:1609–1611CrossRefGoogle Scholar
  113. 113.
    Kirtley SW, Olsen JP, Bau R (1973) J Am Chem Soc 95:4532–4536CrossRefGoogle Scholar
  114. 114.
    Alberto R, Schibli R, Schubiger A, Abram U, Hübener R, Berke H, Kaden TA (1996) Chem Commun 1291–1292Google Scholar
  115. 115.
    Masciocchi N, Sironi A (1990) J Am Chem Soc 112:9395–9397CrossRefGoogle Scholar
  116. 116.
    Keith TA (2015) AIMAll, Version 15.09.27, TK Gristmill Software, Overland Park, KansasGoogle Scholar
  117. 117.
    Biegler-König F, Schönbohm J (2002) J Comput Chem 23:1489–1494CrossRefGoogle Scholar
  118. 118.
    Kohout M (2011) DGrid 4.6. Max Planck Institute for Physical Chemistry of Solids, DresdenGoogle Scholar
  119. 119.
    Matito E, Solá M (2009) Coord Chem Rev 253:647–665CrossRefGoogle Scholar
  120. 120.
    Grin Y, Savin A, Silvi B (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley-VCH, Weinheim, pp 345–382CrossRefGoogle Scholar
  121. 121.
    Feixas F, Matito E, Duran M, Poater J, Solà M (2011) Theor Chem Acc 128:419–431CrossRefGoogle Scholar
  122. 122.
    Kohout M, Wagner FR, Grin Y (2002) Theor Chem Acc 108:150–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Química Física y Analítica-CINNUniversidad de Oviedo-CSICOviedoSpain
  2. 2.Departamento de Química Orgánica e Inorgánica-IUQOEM and Centro de Innovación en Química Avanzada ORFEO-CINQAUniversidad de Oviedo-CSICOviedoSpain

Personalised recommendations