Advertisement

Reductive coupling of carbon monoxide to glycolaldehyde and hydroxypyruvaldehyde polyanions in binuclear cyclopentadienyl lanthanum and lutetium derivatives: analogies to cyclooctatetraene thorium chemistry

  • Huidong Li
  • Hao Feng
  • Weiguo Sun
  • Qunchao Fan
  • R. Bruce King
  • Henry F. SchaeferIII
  • Yinxue Liu
Regular Article

Abstract

Cloke and coworkers have recently (2006–2012) shown that reaction of carbon monoxide with organouranium compounds results in reductive coupling to yield the oligomeric anions C n O n 2− (n = 2, 3, 4). In order to explore the possibilities of similar reductive coupling of carbon monoxide in organolanthanide systems, the structures and thermochemistry of the cyclopentadienyllanthanide carbonyls Cp2Ln2(CO) n (n = 2, 3, 4, 5) have been investigated using lanthanum and lutetium, which are diamagnetic in the favored +3 oxidation state. All of these Cp2Ln2(CO) n structures have long Ln···Ln distances exceeding 4.2 Å for La and 3.6 Å for Lu, indicating the lack of direct metal–metal bonding and suggesting the normally favored +3 oxidation state for these lanthanides. In the dicarbonyls Cp2Ln2(CO)2, the two CO groups couple to form a bridging µ-C2O2 4− ligand, which can be derived by removal of four protons from glycolaldehyde (hydroxyacetaldehyde). Similarly, in the tricarbonyls, the three CO groups couple to form a bridging µ-C3O3 4− ligand, which can be derived by removal of four protons from hydroxypyruvaldehyde. However, the lowest energy structures for the tetracarbonyls Cp2Ln2(CO)4 (by more than 13 kcal/mol) have four separate η2-µ-CO ligands bonded to the central Ln2 unit through both their carbon and oxygen atoms. Thermochemistry of the Cp2Ln2(CO) n systems suggests viability of Cp2Ln2(CO)2 and Cp2Ln2(CO)4. However, Cp2Ln2(CO)3 is predicted to be disfavored relative to disproportionation into Cp2Ln2(CO)2 + Cp2Ln2(CO)4.

Keywords

Carbon monoxide coupling Lanthanides Lutetium Lanthanum Cyclopentadienylmetal derivatives Reductive coupling Glycolaldehyde Hydroxypyruvaldehyde Density functional theory 

Notes

Acknowledgments

We acknowledge the support of the Chinese National Natural Science Foundation (Grant Nos. 11447228 and 11174236), the Natural Science Foundation of the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the Funds for Sichuan Distinguished Scientists (Grant No. 2015JQ0042—China), the Funds for the Youth Innovation Team of Sichuan Province (Grant No. 14TD0013—China), the Program of the Key Scientific Research in Xihua University (Grant No. z1313320), Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province (Grant No. 05020732—China), and the US National Science Foundation (Grants CHE-1057466 and CHE-1361178).

Supplementary material

214_2015_1797_MOESM1_ESM.pdf (381 kb)
Supplementary material 1 (PDF 380 kb)

References

  1. 1.
    Xie H, Wang J, Qin Z, Shi L, Tang Z, Xing X (2014) J Phys Chem A 118:9380CrossRefGoogle Scholar
  2. 2.
    Ricks AM, Gagliardi L, Duncan MA (2010) J Am Chem Soc 132:15905CrossRefGoogle Scholar
  3. 3.
    Gardner BM, Liddle ST (2013) Eur J Inorg Chem 2013(22–23):3753CrossRefGoogle Scholar
  4. 4.
    La Pierre HS, Meyer K (2014) Prog Inorg Chem 58:303CrossRefGoogle Scholar
  5. 5.
    Arnold PL, Turner ZR, Bellabarba RM, Tooze RP (2011) Chem Sci 2:77CrossRefGoogle Scholar
  6. 6.
    Gardner BM, Stewart JC, Davis AL, McMaster J, Lewis W, Blake AJ, Liddle ST (2012) Proc Natl Acad Sci USA 109:9265CrossRefGoogle Scholar
  7. 7.
    Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) Science 311:829CrossRefGoogle Scholar
  8. 8.
    Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) J Am Chem Soc 128:9602CrossRefGoogle Scholar
  9. 9.
    Frey AS, Cloke FGN, Hitchcock PB, Day IJ, Green JC, Aitken G (2008) J Am Chem Soc 130:13681Google Scholar
  10. 10.
    Aitken G, Hazari N, Frey ASP, Cloke FGN, Summerscales OT, Green JC (2011) Dalton Trans 40:11080CrossRefGoogle Scholar
  11. 11.
    McKay D, Frey ASP, Green JC, Cloke FGN, Maron L (2012) Chem Comm 48:4118CrossRefGoogle Scholar
  12. 12.
    Li H, Feng H, Sun W, King RB, Schaefer HF (2013) Inorg Chem 2:6893CrossRefGoogle Scholar
  13. 13.
    Li H, Feng H, Sun W, King RB, Schaefer HF (2014) New J Chem 38:6031CrossRefGoogle Scholar
  14. 14.
    Federoňko M, Temkovic P, Konigstein J, Kováčik V, Tvaroška I (1980) Carbohydr Res 87:35CrossRefGoogle Scholar
  15. 15.
    Evans WL, Waring CE (1926) J Am Chem Soc 48:2678CrossRefGoogle Scholar
  16. 16.
    Hesse G, Ramisch F, Renner K (1956) Chem Ber 89:2137CrossRefGoogle Scholar
  17. 17.
    Reeves HC, Ajl SJJ (1965) Biol Chem 240:569Google Scholar
  18. 18.
    Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804CrossRefGoogle Scholar
  19. 19.
    Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056CrossRefGoogle Scholar
  20. 20.
    Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977CrossRefGoogle Scholar
  21. 21.
    Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994CrossRefGoogle Scholar
  22. 22.
    Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464CrossRefGoogle Scholar
  23. 23.
    Crawford L, Cole-Hamilton DJ, Drent E, Bühl M (2014) Chem Eur J 20:13923CrossRefGoogle Scholar
  24. 24.
    Zhekova H, Krykunov M, Autschbach J, Ziegler T (2014) J Chem Theory Comput 10:3299CrossRefGoogle Scholar
  25. 25.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  26. 26.
    Perdew JP (1986) Phys Rev B 33:882CrossRefGoogle Scholar
  27. 27.
    Tsipis AC, Kefalidis CE, Tsipis CA (2008) J Am Chem Soc 130:9144CrossRefGoogle Scholar
  28. 28.
    Infante I, Raab J, Lyon JT, Liang B, Andrews L, Gagliardi LJ (2007) Phys Chem A 111:11996CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Truhlar DG (2008) Theory Chem Acc 120:215CrossRefGoogle Scholar
  31. 31.
    Cao X, Dolg M (2001) J Chem Phys 115:7348CrossRefGoogle Scholar
  32. 32.
    Cao X, Dolg M (2002) J Mol Struct 581:139CrossRefGoogle Scholar
  33. 33.
    Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  34. 34.
    Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  35. 35.
    Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  36. 36.
    Papas BN, Schaefer HF (2006) J Mol Struct 768:275CrossRefGoogle Scholar
  37. 37.
    Sunderlin LS, Wang D, Squires RR (1993) J Am Chem Soc 115:12060CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Huidong Li
    • 1
  • Hao Feng
    • 1
  • Weiguo Sun
    • 1
  • Qunchao Fan
    • 1
  • R. Bruce King
    • 2
  • Henry F. SchaeferIII
    • 2
  • Yinxue Liu
    • 1
  1. 1.Research Center for Advanced Computation, School of ScienceXihua UniversityChengduChina
  2. 2.Department of Chemistry and Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations