Probing the ESIPT process in 2-amino-1,4-naphthoquinone: thermodynamics properties, solvent effect and chemometric analysis

  • Eduardo Pereira Rocha
  • Teodorico Castro RamalhoEmail author
Regular Article
Part of the following topical collections:
  1. CHITEL 2015 - Torino - Italy


The developing of fluorescent probes for disease diagnosis is a very important task, which favors precision in the diagnosis and success in the treatment. Recently, amino-naphthoquinone derivatives showed to be efficient fluorescent probes for disease diagnosis. Those compounds exhibit excited-state intramolecular proton transfer (ESIPT), which is the main mechanism responsible for their use as fluorescent probes. The understanding of the ESIPT mechanism for naphthoquinones is an important way of developing more efficient and selective fluorescent probes. In this work, the ESIPT process for ANQ was performed at the TD-DFT/CAM-B3LYP/DGTZVP and DFT/B3LYP/DGTZVP level for the electronic and geometric studies. These parameters were selected for the PCA analysis. The solvent effect was investigated by using PCM and IEF-PCM in chloroform, water and methanol. 2-Amino-1,4-naphthoquinone (ANQ) showed blue emission for fluorescence, having keto–keto* absorption at 4.50 eV and the enol–enol* decay at 2.75 eV. The solvent effect was evaluated, and the ESIPT process of ANQ was favorable in nonpolar and polar solvents. Furthermore, the thermodynamics properties showed that the ESIPT is favorable with a proton transfer equilibrium constant of ~105.


ESIPT TD-DFT 2-Amino-1,4-naphthoquinone Thermodynamics IEF-PCM Fluorescent probe 



The authors thank the Brazilian agencies FAPEMIG, CAPES and CNPq for the financial support of this research and UFLA for infrastructure and encouragement in this work. T.C.R. thanks also for the invited professor position at the Czech Republic Center for Basic and Applied Research.

Supplementary material

214_2015_1786_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2020 kb)


  1. 1.
    Egleton JE, Thinnes CC, Seden PT et al (2014) Structure-activity relationships and colorimetric properties of specific probes for the putative cancer biomarker human arylamine N-acetyltransferase 1. Bioorganic Med Chem 22:3030–3054. doi: 10.1016/j.bmc.2014.03.015 CrossRefGoogle Scholar
  2. 2.
    Cheng L, Stopkowicz S, Gauss J (2014) Analytic energy derivatives in relativistic quantum chemistry. Int J Quantum Chem 114:1108–1127. doi: 10.1002/qua.24636 CrossRefGoogle Scholar
  3. 3.
    Chaudhuri S, Pahari B, Sengupta PK (2009) Ground and excited state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: absorption and fluorescence spectroscopic studies. Biophys Chem 139:29–36. doi: 10.1016/j.bpc.2008.09.018 CrossRefGoogle Scholar
  4. 4.
    Li D, Cheng L, Jin B (2014) Investigation on PCET–accompanied dimerization of 5–hydroxy–1, 4–naphthoquinone in the process of electrochemical reduction by in situ FT–IR spectroelectrochemistry and density functional calculation. Electrochim Acta 130:387–396. doi: 10.1016/j.electacta.2014.03.049 CrossRefGoogle Scholar
  5. 5.
    Laurieri N, Egleton JE, Varney A et al (2013) A novel color change mechanism for breast cancer biomarker detection: naphthoquinones as specific ligands of human arylamine N-acetyltransferase 1. PLoS ONE. doi: 10.1371/journal.pone.0070600 Google Scholar
  6. 6.
    Zhu B, Kan H, Liu J et al (2014) A highly selective ratiometric visual and red-emitting fluorescent dual-channel probe for imaging fluoride anions in living cells. Biosens Bioelectron 52:298–303. doi: 10.1016/j.bios.2013.09.010 CrossRefGoogle Scholar
  7. 7.
    Beleites C, Steiner G, Sowa MG et al (2005) Classification of human gliomas by infrared imaging spectroscopy and chemometric image processing. Vib Spectrosc 38:143–149. doi: 10.1016/j.vibspec.2005.02.020 CrossRefGoogle Scholar
  8. 8.
    Wu J, Liu W, Ge J et al (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495. doi: 10.1039/c0cs00224k CrossRefGoogle Scholar
  9. 9.
    Russell AJ, Westwood IM, Crawford MHJ et al (2009) Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorganic Med Chem 17:905–918. doi: 10.1016/j.bmc.2008.11.032 CrossRefGoogle Scholar
  10. 10.
    Li M, Xu C, Wu L et al (2013) Self-assembled peptide-polyoxometalate hybrid nanospheres: two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer’s disease. Small 9:3455–3461. doi: 10.1002/smll.201202612 CrossRefGoogle Scholar
  11. 11.
    Henary MM, Wu Y, Fahrni CJ (2004) Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer. Chem A Eur J 10:3015–3025. doi: 10.1002/chem.200305299 CrossRefGoogle Scholar
  12. 12.
    Munday R, Smith BL, Munday CM (2005) Effect of inducers of DT-diaphorase on the haemolytic activity and nephrotoxicity of 2-amino-1,4-naphthoquinone in rats. Chem Biol Interact 155:140–147. doi: 10.1016/j.cbi.2005.06.001 CrossRefGoogle Scholar
  13. 13.
    Doroshenko AO, Matsakov AY, Nevskii OV, Grygorovych OV (2012) Excited state intramolecular proton transfer reaction revisited: S1 state or general reversibility? J Photochem Photobiol A Chem 250:40–49. doi: 10.1016/j.jphotochem.2012.09.010 CrossRefGoogle Scholar
  14. 14.
    Paul BK, Guchhait N (2011) TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction. J Lumin 131:1918–1926. doi: 10.1016/j.jlumin.2011.04.046 CrossRefGoogle Scholar
  15. 15.
    Lee J, Kim CH, Joo T (2013) Active role of proton in excited state intramolecular proton transfer reaction. J Phys Chem A 117:1400–1405. doi: 10.1021/jp311884b CrossRefGoogle Scholar
  16. 16.
    Basarić N, Cindro N, Hou Y et al (2011) Competing photodehydration and excited-state intramolecular proton transfer (ESIPT) in adamantyl derivatives of 2-phenylphenols. Can J Chem 89:221–234. doi: 10.1139/V10-102 CrossRefGoogle Scholar
  17. 17.
    Pushpam S, Kottaisamy M, Ramakrishnan V (2013) Dynamic quenching study of 2-amino-3-bromo-1,4-naphthoquinone by titanium dioxide nano particles in solution (methanol). Spectrochim Acta Part A Mol Biomol Spectrosc 114:272–276. doi: 10.1016/j.saa.2013.05.038 CrossRefGoogle Scholar
  18. 18.
    Salunke-Gawali S, Pawar O, Nikalje M et al (2014) Synthesis, characterization and molecular structures of homologated analogs of 2-bromo-3-(n-alkylamino)-1,4-napthoquinone. J Mol Struct 1056–1057:97–103. doi: 10.1016/j.molstruc.2013.10.016 CrossRefGoogle Scholar
  19. 19.
    Pal S, Jadhav M, Weyhermüller T et al (2013) Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone. J Mol Struct 1049:355–361. doi: 10.1016/j.molstruc.2013.06.062 CrossRefGoogle Scholar
  20. 20.
    Charaf-Eddin A, Planchat A, Mennucci B et al (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9:2749–2760. doi: 10.1021/ct4000795 CrossRefGoogle Scholar
  21. 21.
    Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039. doi: 10.1002/qua.24438 CrossRefGoogle Scholar
  22. 22.
    Miranda FS, Ronconi CM, Sousa MOB et al (2014) 6-Aminocoumarin-naphthoquinone conjugates: design, synthesis, photophysical and electrochemical properties and DFT calculations. J Braz Chem Soc 25:133–142. doi: 10.5935/0103-5053.20130279 Google Scholar
  23. 23.
    Jacquemin D, Perpte EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 123–135. doi: 10.1021/ct700187z
  24. 24.
    Castilho-Almeida EW, De Almeida WB, Dos Santos HF (2013) Conformational analysis of lignin models: a chemometric approach. J Mol Model 19:2149–2163. doi: 10.1007/s00894-012-1689-4 CrossRefGoogle Scholar
  25. 25.
    de Azevedo ALMS, Neto BB, Scarminio IS et al (1996) A chemometric analysis of ab initio vibrational frequencies and infrared intensities of methyl fluoride. J Comput Chem 17:167–177. doi: 10.1002/(SICI)1096-987X(19960130)17:2<167:AID-JCC4>3.0.CO;2-U CrossRefGoogle Scholar
  26. 26.
    Barboza CA, Vazquez PAM, Mac-Leod Carey D, Arratia-Perez R (2012) A TD-DFT basis set and density functional assessment for the calculation of electronic excitation energies of fluorene. Int J Quantum Chem 112:3434–3438. doi: 10.1002/qua.24300 CrossRefGoogle Scholar
  27. 27.
    Ferreira MMC (2002) Multivariate QSAR. J Braz Chem Soc 13:742–753. doi: 10.1590/S0103-50532002000600004 Google Scholar
  28. 28.
    Jacquemin D, Peltier C, Ciofini I (2010) Visible spectrum of naphthazarin investigated through time-dependent density functional theory. Chem Phys Lett 493:67–71. doi: 10.1016/j.cplett.2010.04.071 CrossRefGoogle Scholar
  29. 29.
    Boo BH, Lee JK, Lim EC (2008) Ab initio, DFT, and spectroscopic studies of excited-state structure and dynamics of 9-ethylfluorene. J Mol Struct 892:110–115. doi: 10.1016/j.molstruc.2008.05.004 CrossRefGoogle Scholar
  30. 30.
    Perpète EA, Lambert C, Wathelet V et al (2007) Ab initio studies of the λmax of naphthoquinones dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 68:1326–1333. doi: 10.1016/j.saa.2007.02.012 CrossRefGoogle Scholar
  31. 31.
    Kavitha R, Stalin T (2014) A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution. J Lumin 149:12–18. doi: 10.1016/j.jlumin.2013.11.044 CrossRefGoogle Scholar
  32. 32.
    Imberty A, Tran V, Pérez S (1990) Relaxed potential energy surfaces of N-linked oligosaccharides: the mannose-α(1 → 3)-mannose case. J Comput Chem 11:205–216. doi: 10.1002/jcc.540110206 CrossRefGoogle Scholar
  33. 33.
    Poleshchuk OK, Yureva AG, Filimonov VD, Frenking G (2009) Study of a surface of the potential energy for processes of alkanes free-radical iodination by B3LYP/DGDZVP method. J Mol Struct THEOCHEM 912:67–72. doi: 10.1016/j.theochem.2009.03.001 CrossRefGoogle Scholar
  34. 34.
    Chen K, Yan W, Zhang X et al (2015) Optimization of process variables in the synthesis of isoamyl isovalerate using sulfonated organic heteropolyacid salts as catalysts. J Braz Chem Soc 26:600–608. doi: 10.5935/0103-5053.20150015 Google Scholar
  35. 35.
    Box GEP, Draper NR (1987) Empirical model-building and response surfaces, 1st edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Katti DR, Schmidt SR, Ghosh P, Katti KS (2005) Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics. Clays Clay Miner 53:171–178. doi: 10.1346/CCMN.2005.0530207 CrossRefGoogle Scholar
  37. 37.
    Stanton JF, Gauss J, Ishikawa N, Head-Gordon M (1995) A comparison of single reference methods for characterizing stationary points of excited state potential energy surfaces. J Chem Phys 103:4160–4174. doi: 10.1063/1.469601 CrossRefGoogle Scholar
  38. 38.
    Sandhoefer B, Kossmann S, Neese F (2013) Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller–Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation. J Chem Phys 10(1063/1):4792362Google Scholar
  39. 39.
    Glaser R, Chen N, Wu H et al (2004) 13C NMR study of halogen bonding of haloarenes: measurements of solvent effects and theoretical analysis. J Am Chem Soc 126:4412–4419. doi: 10.1021/ja0383672 CrossRefGoogle Scholar
  40. 40.
    Solimannejad M, Malekani M, Alkorta I (2010) Theoretical study of the halogen-hydride complexes between XeH2 and carbon halogenated derivatives. J Mol Struct THEOCHEM 955:140–144. doi: 10.1016/j.theochem.2010.06.004 CrossRefGoogle Scholar
  41. 41.
    Poorabdollah H, Omidyan R, Solimannejad M, Azimi G (2014) Hydrogen bond strengthening of cis-trans glyoxal dimers in electronic excited states: a theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 122:337–342. doi: 10.1016/j.saa.2013.11.034 CrossRefGoogle Scholar
  42. 42.
    Li X-H, Yong Y-L, Cui H-L et al (2015) Theoretical investigation on vibrational spectra, first order hyperpolarizability and NBO analysis of 4-phenylpyridinium hydrogen squarate. Spectrochim Acta A Mol Biomol Spectrosc 147:14–19. doi: 10.1016/j.saa.2015.03.060 CrossRefGoogle Scholar
  43. 43.
    Kobayashi K, Sasaki A, Takeuchi H, Suginome H (1992) Photoinduced molecular transformations. Part 127. A new [2 + 2] photoaddition of 2-amino-1,4-naphthoquinone with vinylarenes and the synthesis of 2,3-dihydronaphtho[1,2-b]furan-4,5-diones and 2,3-dihydronaphtho[2,3-b]furan-4,9-diones. J Chem Soc Perkin Trans 1:115–121. doi: 10.1039/P19920000115 CrossRefGoogle Scholar
  44. 44.
    Yasumatsu H, Jeung GH (2014) Ab initio study on electronically excited states of lithium isocyanide, LiNC. Chem Phys Lett 591:25–28. doi: 10.1016/j.cplett.2013.11.005 CrossRefGoogle Scholar
  45. 45.
    Jacquemin D, Planchat A, Adamo C, Mennucci B (2012) TD-DFT assessment of functionals for optical 0-0 transitions in solvated dyes. J Chem Theory Comput 8:2359–2372. doi: 10.1021/ct300326f CrossRefGoogle Scholar
  46. 46.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032. doi: 10.1063/1.474659 CrossRefGoogle Scholar
  47. 47.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi: 10.1016/0009-2614(96)00349-1 CrossRefGoogle Scholar
  48. 48.
    Thompson LM, Lasoroski A, Champion PM et al (2014) Analytical harmonic vibrational frequencies for the green fluorescent protein computed with ONIOM: chromophore mode character and its response to environment. J Chem Theory Comput 10:751–766. doi: 10.1021/ct400664p CrossRefGoogle Scholar
  49. 49.
    Trani F, Scalmani G, Zheng G et al (2011) Time-dependent density functional tight binding: new formulation and benchmark of excited states. J Chem Theory Comput 7:3304–3313. doi: 10.1021/ct200461y CrossRefGoogle Scholar
  50. 50.
    Radulović NS, Blagojević PD, Skropeta D (1997) Average mass scan of the total ion chromatogram versus percentage chemical composition in multivariate statistical comparison of complex volatile mixtures. J Braz Chem Soc 21:2319–2326. doi: 10.1590/S0103-50532010001200020 Google Scholar
  51. 51.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi: 10.1016/j.cplett.2004.06.011 CrossRefGoogle Scholar
  52. 52.
    Kobayashi R, Amos RD (2006) The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex. Chem Phys Lett 420:106–109. doi: 10.1016/j.cplett.2005.12.040 CrossRefGoogle Scholar
  53. 53.
    Dos Santos JC, De França JA, Do Nascimento Aquino LE et al (2014) Theoretical calculation and structural studies for a new nitrogen derivative from nor-lapachol. J Mol Struct 1060:233–238. doi: 10.1016/j.molstruc.2013.12.047 CrossRefGoogle Scholar
  54. 54.
    Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351. doi: 10.1016/S0009-2614(97)00207-8 CrossRefGoogle Scholar
  55. 55.
    Peach MJG, Helgaker T, Sałek P et al (2006) Assessment of a Coulomb-attenuated exchange-correlation energy functional. Phys Chem Chem Phys 8:558–562. doi: 10.1039/b511865d CrossRefGoogle Scholar
  56. 56.
    Jacquemin D, Preat J, Wathelet V, Perpète EA (2006) Time-dependent density functional theory determination of the absorption spectra of naphthoquinones. Chem Phys 328:324–332. doi: 10.1016/j.chemphys.2006.07.037 CrossRefGoogle Scholar
  57. 57.
    Jacquemin D, Perpète Ea, Ciofini I, Adamo C (2008) Fast and reliable theoretical determination of pKa* for photoacids. J Phys Chem A 112:794–796. doi: 10.1021/jp7105814 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemistry DepartmentFederal University of LavrasLavrasBrazil
  2. 2.Center for Basic and Applied Research, Faculty of Informatics and ManagementUniversity of Hradec KraloveHradec KraloveCzech Republic
  3. 3.Federal Institute of Education, Science and Technology Southeast of Minas GeraisRio PombaBrazil

Personalised recommendations