A computational approach to the resonance Raman spectrum of doxorubicin in aqueous solution

  • Marta Olszówka
  • Rosario Russo
  • Giordano Mancini
  • Chiara Cappelli
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective


In this paper, a computational approach to model conformational and spectroscopic properties of doxorubicin in aqueous environment is presented. We show that our approach, rooted in DFT and TD-DFT with the further inclusion of solvent effects within the polarizable continuum model, is able to describe the main features of vibrational resonance Raman spectra, as well as IR and UV–Vis spectra. Also, in order to get more insight, the limitations of the continuum approach to solvation, and to explain some of the discrepancies between calculations and experiments, a detailed analysis of the solvated system through molecular dynamics is presented.


Resonance Raman Doxorubicin DFT Polarizable continuum model Molecular dynamics 



MO and CC acknowledge support from the Italian MIUR (PRIN 2012 NB3KLK002) and COST CMST-Action CM1405 MOLecules In Motion (MOLIM).

Supplementary material

214_2015_1781_MOESM1_ESM.pdf (784 kb)
Supplementary material 1 (pdf 784 KB)


  1. 1.
    Brayfield A (ed) (2013) “Doxorubicin”. Martindale: the complete drug reference. Pharmaceutical Press, LondonGoogle Scholar
  2. 2.
    Arcamone F, Cassinelli G, Fantini G et al (1969) Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11:1101–1110CrossRefGoogle Scholar
  3. 3.
    Kersten H, Kersten W (1974) Inhibitors of nucleic acid synthesis. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Airoldi M, Barone G, Gennaro G, Giuliani AM, Giustini M (2014) Interaction of doxorubicin with polynucleotides. A spectroscopic study. Biochemistry 53:2197–2207CrossRefGoogle Scholar
  5. 5.
    Fiallo MML, Tayeb H, Suarato A, Garnier-Suillerot A (1998) Circular dichroism studies on anthracycline antitumor compounds. Relationship between the molecular structure and the spectroscopic data. J Pharm Sci 8:967CrossRefGoogle Scholar
  6. 6.
    Drechsel H, Fiallo M, Garnier-Suillerot A, Matzanke BF, Schunemann V (2001) Spectroscopic studies on iron complexes of different anthracyclines in aprotic solvent systems. Inorg Chem 40:5324–5333CrossRefGoogle Scholar
  7. 7.
    Kizek R, Adam V, Hrabeta J, Eckschlager T, Smutny S, Burda JV, Frei E, Stiborova M (2012) Anthracyclines and ellipticines as DNA-damaging anticancer drugs: recent advances. Pharmacol Ther 133:26–39CrossRefGoogle Scholar
  8. 8.
    Lu Y, Lv J, Zhang G, Wang G, Liu Q (2010) Interaction of an anthracycline disaccharide with ctDNA: investigation by spectroscopic technique and modeling studies spectrochim. Acta Mol Biomol Spectrosc 75:1511–1515CrossRefGoogle Scholar
  9. 9.
    Temperini C, Messori L, Orioli P, Di Bugno C, Animati F, Ughetto G (2003) The crystal structure of the complex between a disaccharide anthracycline and the DNA hexamer d(CGATCG) reveals two different binding sites involving two DNA duplexes. Nucleic Acids Res 31:1464–1469CrossRefGoogle Scholar
  10. 10.
    Quigley GJ, Wang AHJ, Ughetto G, Van Der Marel G, Van Boom JH, Rich A (1980) Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci USA 77:7204–7208CrossRefGoogle Scholar
  11. 11.
    Post GC, Barthel BL, Burkhart DJ, Hagadorn JR, Koch TH (2005) Doxazolidine, a proposed active metabolite of doxorubicin that cross-links DNA. J Med Chem 48:7648–7657CrossRefGoogle Scholar
  12. 12.
    Manfait M, Alix AJP, Jeannesson P, Jardillier J-C, Theophanides T (1982) Interaction of adriamycin with DNA as studied by resonance Raman spectroscopy. Nucleic Acids Res 10:3803CrossRefGoogle Scholar
  13. 13.
    Lee CJ, Kang JS, Kim MS, Lee KP, Lee MS (2004) The study of doxorubicin and its complex with DNA by SERS and UV-resonance Raman spectroscopy. Bull Korean Chem Soc 25:1211CrossRefGoogle Scholar
  14. 14.
    Smulevich G, Mantini AR, Feis A, Marzocchi MP (2001) Resonance Raman spectra and transform analysis of anthracyclines and their complexes with DNA. J Raman Spectrosc 32:565–578CrossRefGoogle Scholar
  15. 15.
    Yan Q, Priebe W, Chaires JB, Czernuszewicz RS (1997) Interaction of doxorubicin and its derivatives with DNA: elucidation by resonance Raman and surface-enhanced resonance Raman spectroscopy. Biospectroscopy 3:307–316CrossRefGoogle Scholar
  16. 16.
    Butler CA, Cooney RP, Denny WA (1994) Resonance Raman study of the binding of the anticancer drug amsacrine to DNA. Appl Spectrosc 48:822CrossRefGoogle Scholar
  17. 17.
    Beljebbar A, Sockalingum GD, Angiboust JF, Manfait M (1995) Comparative FT SERS, resonance Raman and SERRS studies of doxorubicin and its complex with DNA. Spectrochim Acta Mol Biomol Spectrosc 51:2083–2090CrossRefGoogle Scholar
  18. 18.
    Das G, Nicastri A, Coluccio ML, Gentile F, Candeloro P, Cojoc G, Liberale C, De Angelis F, Di Fabrizio E (2010) FT-IR, Raman, RRS measurements and DFT calculation for doxorubicin. Microsc Res Tech 73:991–995Google Scholar
  19. 19.
    Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyka M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44:1061–1076CrossRefGoogle Scholar
  20. 20.
    Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: \(\alpha\)-synuclein. J Am Chem Soc 126:2399–2408CrossRefGoogle Scholar
  21. 21.
    Hillig KW, Morris MD (1976) Pre-resonance Raman spectra of adriamycin. Biochem Biophys Res Commun 71:1228–1233CrossRefGoogle Scholar
  22. 22.
    Huang C-Y, Balakrishnan G, Spiro TG (2006) Protein secondary structure from deep-UV resonance Raman spectroscopy. J Raman Spectrosc 37:277–282CrossRefGoogle Scholar
  23. 23.
    Chi Z, Chen XG, Holtz JSW, Asher SA (1998) UV resonance raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure. Biochemistry 37:2854–2864CrossRefGoogle Scholar
  24. 24.
    Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK (2012) UV resonance raman investigations of peptide and protein structure and dynamics. Chem Rev 112:2604–2628CrossRefGoogle Scholar
  25. 25.
    Hong Z, Wert J, Asher SA (2013) UV resonance Raman and DFT studies of arginine side chains in peptides: insights into arginine hydration. J Phys Chem B 117:7145–7156CrossRefGoogle Scholar
  26. 26.
    Cho N, Asher SA (1993) UV resonance Raman studies of DNA-pyrene interactions: optical decoupling Raman spectroscopy selectively examines external site bound pyrene. J Am Chem Soc 115(14):6349–6356CrossRefGoogle Scholar
  27. 27.
    Chen TI, Morris MD (1983) Resonance inverse Raman spectroscopic study of proflavin-DNA intercalation. J Phys Chem 87:2314–2317CrossRefGoogle Scholar
  28. 28.
    Stanicova J, Fabriciova G, Chinsky L, Sutiak V, Miskovsky P (1999) Amantadine–DNA interaction as studied by classical and resonance Raman spectroscopy. J Mol Struct 478:129–138CrossRefGoogle Scholar
  29. 29.
    Mariam YH, Chantranupong L (2000) DFT computational studies of intramolecular hydrogen-bonding interactions in a model system for 5-iminodaunomycin. J Mol Struct (Theochem) 529:83–97CrossRefGoogle Scholar
  30. 30.
    Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand- macromolecule complexes. Drug Discov Today 1:686–702CrossRefGoogle Scholar
  31. 31.
    Lei H, Wanga X, Wu C (2012) Early stage intercalation of doxorubicin to DNA fragments observed in molecular dynamics binding simulations. J Mol Graph Model 38:279–289CrossRefGoogle Scholar
  32. 32.
    Wilhelm M, Mukherjee A, Bouvier B, Zakrzewska K, Hynes JT, Lavery R (2012) Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA. J Am Chem Soc 134:8588–8596CrossRefGoogle Scholar
  33. 33.
    Trieb M, Rauch C, Wibowo FR, Wellenzohn B, Liedl KR (2004) Cooperative effects on the formation of intercalation sites. Nucleic Acids Res 32:4696–4703CrossRefGoogle Scholar
  34. 34.
    Poupaert JH, Couvreur P (2003) A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles. J Control Release 92:19–26CrossRefGoogle Scholar
  35. 35.
    Jacquemin D, Brémond E, Planchat A, Ciofini I, Adamo C (2011) TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J Chem Theory Comput 7:1882–1892CrossRefGoogle Scholar
  36. 36.
    Jacquemin D, Brémond E, Ciofini I, Adamo C (2012) Impact of vibronic couplings on perceived colors: two anthraquinones as a working example. J Phys Chem Lett 3:468–471CrossRefGoogle Scholar
  37. 37.
    Egidi F, Cappelli C (2015) Calculation of molecular properties in solution. In: Reference module in chemistry, molecular sciences and chemical engineering. ElsevierGoogle Scholar
  38. 38.
    Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422CrossRefGoogle Scholar
  39. 39.
    Mennucci B, Cappelli C, Cammi R, Tomasi J (2007) A quantum mechanical polarizable continuum model for the calculation of resonance Raman spectra in condensed phase. Theor Chem Acc 117:1029–1039CrossRefGoogle Scholar
  40. 40.
    Santoro F, Cappelli C, Barone V (2011) Effective time-independent calculations of vibrational resonance Raman spectra of isolated and solvated molecules including Duschinsky and Herzberg-Teller effects. J Chem Theory Comput 7:1824–1839CrossRefGoogle Scholar
  41. 41.
    Egidi F, Bloino J, Cappelli C, Barone V (2014) A robust and effective time-independent route to the calculation of resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects. J Chem Theory Comput 10:346–363CrossRefGoogle Scholar
  42. 42.
    Avila Ferrer FJ, Barone V, Cappelli C, Santoro F (2013) Duschinsky, Herzberg-Teller, and multiple electronic resonance interferential effects in resonance Raman spectra and excitation profiles. The case of pyrene. J Chem Theory Comput 9:3597–3611CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H,Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G,Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J,Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T,Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ,Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J,Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M,Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C,Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R,Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, VothGA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö,Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09Revision C.01. Gaussian Inc. Wallingford CTGoogle Scholar
  44. 44.
    Gaussian Development Version, Revision I.02, Frisch MJ, Trucks GW,Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, BaroneV, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X,Hratchian HP, Bloino J, Janesko BG, Izmaylov AF, Lipparini F, ZhengG, Sonnenberg JL, Liang W, Hada M, Ehara M, Toyota K, Fukuda R,Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, VrevenT, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, BearparkM, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, KobayashiR, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS,Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB,Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O,Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K,Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S,Parandekar PV, Mayhall NJ, Daniels AD, Farkas O, Foresman JB, OrtizJV, Cioslowski J, Fox DJ (2014) Gaussian, Inc., Wallingford CTGoogle Scholar
  45. 45.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  46. 46.
    Limacher PA, Mikkelsen KV, Luthi HP (2009) On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 130:194114CrossRefGoogle Scholar
  47. 47.
    Bulik IW, Zalesny R, Bartkowiak W, Luis JM, Kirtman B, Scuseria GE, Avramopoulos A, Reis H, Papadopoulos MG (2013) Performance of density functional theory in computing nonresonant vibrational (hyper)polarizabilities. J.Comput Chem 34:1775–1784CrossRefGoogle Scholar
  48. 48.
    Baranowska-Laczkowska A, Bartkowiak W, Gora RW, Pawlowski F, Zalesny R (2013) On the performance of long-range-corrected density functional theory and reduced-size polarized LPol-n basis sets in computations of electric dipole (hyper)polarizabilities of \(\pi\)-conjugated molecules. J Comput Chem 34:819–826CrossRefGoogle Scholar
  49. 49.
    RCSB Protein Data Bank. (
  50. 50.
    Marvin, 2015, ChemAxon. (
  51. 51.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094CrossRefGoogle Scholar
  52. 52.
    Mennucci B (2012) Polarizable continuum model. WIREs Comput Mol Sci 2:386–404CrossRefGoogle Scholar
  53. 53.
    Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441CrossRefGoogle Scholar
  54. 54.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  55. 55.
    Barone V, Cimino P, Stendardo E (2008) Development and validation of the B3LYP/N07D computational model for structural parameter and magnetic tensors of large free radicals. J Chem Theory Comput 4:751–764CrossRefGoogle Scholar
  56. 56.
    van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff P, Tieleman D, Sijbers A, Feenstra K, van Drunen R, Berendsen H (2010) Gromacs4.5. Gromacs User Manual version 4.5.4.
  57. 57.
    Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J Comput Chem 11:1357–1377CrossRefGoogle Scholar
  58. 58.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  59. 59.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  60. 60.
    Hummer G, Pratt LR, Garcia AE (1998) Molecular theories and simulation of ions and polar molecules in water. J Phys Chem A 41:7885–7895CrossRefGoogle Scholar
  61. 61.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463CrossRefGoogle Scholar
  62. 62.
    Bussi G, Donadio D, Parrinello M (2013) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRefGoogle Scholar
  63. 63.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  64. 64.
    Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113:10663CrossRefGoogle Scholar
  65. 65.
    Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem 100:16098CrossRefGoogle Scholar
  66. 66.
    Wong MW, Wiberg KB, Frisch MJ (1995) Ab initio calculation of molar volumes: comparison with experiment and use in solvation models. J Comput Chem 16:385CrossRefGoogle Scholar
  67. 67.
    Cappelli C, Mennucci B, da Silva CO, Tomasi J (2000) Refinements on solvation continuum models: hydrogen-bond effects on the OH stretch in liquid water and methanol. J Chem Phys 112:5382–5392CrossRefGoogle Scholar
  68. 68.
    Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210CrossRefGoogle Scholar
  69. 69.
    Tomasi J, Bonaccorsi R (1992) Methodological aspects of the solvation models based on continuous solvent distributions. Croat Chem Acta 65:29Google Scholar
  70. 70.
    West RC (ed) (2005) Handbook of chemistry and physics. Chemical Rubber Company, Cleveland, p 198Google Scholar
  71. 71.
    Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput 5:2420–2435CrossRefGoogle Scholar
  72. 72.
    Cave RJ, Burke K, Castner EW (2002) Theoretical investigation of the ground and excited states of coumarin 151 and coumarin 120. J Phys Chem A 106:9294–9305CrossRefGoogle Scholar
  73. 73.
    Fabian J (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dyes Pigm 84:36–53CrossRefGoogle Scholar
  74. 74.
    Orio M, Pantazis DA, Neese F (2009) Density functional theory. Photosynth Res 102:443–453CrossRefGoogle Scholar
  75. 75.
    Avila Ferrer FJ, Cerezo J, Stendardo E, Improta R, Santoro F (2013) Insights for an accurate comparison of computational data to experimental absorption and emission spectra: beyond the vertical transition approximation. J Chem Theory Comput 9:2072–2082CrossRefGoogle Scholar
  76. 76.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRefGoogle Scholar
  77. 77.
    Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) Effective method to compute Franck–Condon integrals for optical spectra of large molecules in solution. J Chem Phys 126:084509/1-13Google Scholar
  78. 78.
    Dierksen M, Grimme S (2005) An efficient approach for the calculation of Franck-Condon integrals of large molecules. J Chem Phys 122:244101CrossRefGoogle Scholar
  79. 79.
    Bloino J, Biczysko M, Santoro F, Barone V (2010) General approach to compute vibrationally resolved one-photon electronic spectra. J Chem Theory Comput 6:1256CrossRefGoogle Scholar
  80. 80.
    Peticolas L, Rush T (1995) Ab initio calculations of the ultraviolet resonance Raman spectrum of Uracil. J Comput Chem 16:1261–1270CrossRefGoogle Scholar
  81. 81.
    Heller EJ, Lee S-Y (1979) Time dependent theory of Raman scattering. J Chem Phys 71:4777–4788CrossRefGoogle Scholar
  82. 82.
    Heller EJ, Sundberg RL, Tannor D (1982) Simple aspects of Raman scattering. J Phys Chem 86:1822–1833CrossRefGoogle Scholar
  83. 83.
    Yoshida Z, Takabayashi F (1968) Electronic spectra of mono-substituted anthraquinones and solvent effects. Tetrahedron 24:913–943CrossRefGoogle Scholar
  84. 84.
    Issa IM, Issa RM, El-Ezaby MS, Ahmed Y-Z (1969) Spectrophotometric studies on acid in solutions of varying pH. Z Phys Chem 242:169–176Google Scholar
  85. 85.
    Kuboyama A, Wada K (1966) The \(\pi\)-electronic excitation energies of anthraquinone. Bull Chem Soc Jpn 2:1874–1877CrossRefGoogle Scholar
  86. 86.
    Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141CrossRefGoogle Scholar
  87. 87.
    Lipparini F, Barone V (2011) Polarizable force fields and polarizable continuum model: a fluctuating charges/PCM approach. 1. theory and implementation. J Chem Theory Comput 7:3711CrossRefGoogle Scholar
  88. 88.
    Mortier WJ, Van Genechten K, Gasteiger J (1985) Electronegativity equalization: application and parametrization. J Am Chem Soc 107:829CrossRefGoogle Scholar
  89. 89.
    Rappe A, Goddard W (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358CrossRefGoogle Scholar
  90. 90.
    Lipparini F, Cappelli C, Scalmani G, De Mitri N, Barone V (2012) Analytical first and second derivatives for a fully polarizable QM/Classical hamiltonian. J Chem Theory Comput 8:4270CrossRefGoogle Scholar
  91. 91.
    Lipparini F, Cappelli C, Barone V (2013) A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: general three-layer model, computational implementation and pilot applications. J Chem Phys 138:234108CrossRefGoogle Scholar
  92. 92.
    Lipparini F, Cappelli C, Barone V (2012) Linear response theory and electronic transition energies for a fully polarizable QM/classical Hamiltonian. J Chem Theory Comput 8:4153CrossRefGoogle Scholar
  93. 93.
    Lipparini F, Egidi F, Cappelli C, Barone V (2013) The optical rotation of methyloxirane in aqueous solution: a never ending story? J Chem Theory Comput 9:1880CrossRefGoogle Scholar
  94. 94.
    Egidi F, Russo R, Carnimeo I, D’Urso A, Mancini G, Cappelli C (2015) The electronic circular dichroism of nicotine in aqueous solution: a test case for continuum and mixed explicit-continuum solvation approaches. J Phys Chem A 119:5396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marta Olszówka
    • 1
    • 2
  • Rosario Russo
    • 1
    • 2
  • Giordano Mancini
    • 1
    • 2
  • Chiara Cappelli
    • 1
    • 2
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.Scuola Normale SuperiorePisaItaly

Personalised recommendations