Theoretical Chemistry Accounts

, 134:145 | Cite as

Virtual eyes for technology and cultural heritage: towards computational strategy for new and old indigo-based dyes

  • Vincenzo Barone
  • Malgorzata Biczysko
  • Camille Latouche
  • Andrea Pasti
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective


A cost-effective, robust and reliable computational strategy is applied to simulate peak positions and band shapes of UV–Vis spectra together with the dye colours perceived by human eyes. The features of our virtual multifrequency spectrometer (VMS) relevant to this topic are sketched with special focus on the selection of density functional, vibronic model and solvent description. Furthermore, the new VMS-draw graphical user interface is employed for user-friendly pre- and post-processing of the computed data. The family of indigo dyes is used as case study in view of their continued use in the field of cultural heritage, together with new promising applications for photonics and sustainable energy. After assessment of different simplified models employed in previous studies, the role of several substituents and of dimerization in tuning the colour and spectral features are analysed in detail by means of both accurate computations and interpretative models. The results are in remarkable agreement with experiment and allow to rationalize the behaviour of this class of dyes.


Indigoids Quantum mechanical calculations TD-DFT  Electronic spectra line shapes 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under the Grant Agreement No. ERC-2012-AdG-320951-DREAMS. The high-performance computer facilities of the DREAMS center ( are acknowledged for providing computer resources. Alberto Baiardi is acknowledged for fruitful discussions and computations of Huang–Rhys factors.

Supplementary material

214_2015_1753_MOESM1_ESM.pdf (809 kb)
Supplementary material 1 (pdf 809 KB)


  1. 1.
    Barone V (ed) (2011) Computational strategies for spectroscopy, from small molecules to nano systems. Wiley, HobokenGoogle Scholar
  2. 2.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) Chem. Rev. 110:2620CrossRefGoogle Scholar
  3. 3.
    Kamerlin SCL, Warshel A (2011) Phys. Chem. Chem. Phys. 13:10401CrossRefGoogle Scholar
  4. 4.
    Pedone A, Prampolini G, Monti S, Barone V (2011) Chem. Mater. 23:5016CrossRefGoogle Scholar
  5. 5.
    Curutchet C, Kongsted J, Munoz-Losa A, Hossein-Nejad H, Scholes GD, Mennucci B (2011) J. Am. Chem. Soc. 133:3078CrossRefGoogle Scholar
  6. 6.
    König C, Neugebauer J (2012) Chem. Phys. Chem. 13:386Google Scholar
  7. 7.
    Labat F, Le Bahers T, Ciofini I, Adamo C (2012) Acc. Chem. Res. 45:1268CrossRefGoogle Scholar
  8. 8.
    Prampolini G, Bellina F, Biczysko M, Cappelli C, Carta L, Lessi M, Pucci A, Ruggeri G, Barone V (2013) Chem. Eur. J. 19:1996CrossRefGoogle Scholar
  9. 9.
    Ribeiro AJM, Alberto ME, Ramos MJ, Fernandes PA, Russo N (2013) Chem. Eur. J 19:14081CrossRefGoogle Scholar
  10. 10.
    Pedone A, Gambuzzi E, Barone V, Bonacchi S, Genovese D, Rampazzo E, Prodi L, Montalti M (2013) Phys. Chem. Chem. Phys. 15:12360CrossRefGoogle Scholar
  11. 11.
    Dreuw A, Faraji S (2013) Phys. Chem. Chem. Phys. 15:19957CrossRefGoogle Scholar
  12. 12.
    Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) J. Am. Chem. Soc. 136:5367CrossRefGoogle Scholar
  13. 13.
    Laurent AD, Adamo C, Jacquemin D (2014) Phys. Chem. Chem. Phys. 16:14334CrossRefGoogle Scholar
  14. 14.
    Goez A, Jacob CR, Neugebauer J (2014) Comput. Theor. Chem. 1040–1041:347CrossRefGoogle Scholar
  15. 15.
    Horch M, Hildebrandt P, Zebger I (2015) Phys. Chem. Chem. Phys. 17:18222CrossRefGoogle Scholar
  16. 16.
    Imahori H, Umeyama T, Ito S (2009) Acc. Chem. Res. 42:1809CrossRefGoogle Scholar
  17. 17.
    Debije MG, Verbunt PPC (2012) Adv. Energy Mater. 2:12CrossRefGoogle Scholar
  18. 18.
    WGvan Sark (2013) Renew. Energy 49:207CrossRefGoogle Scholar
  19. 19.
    Reimers JR, Cai ZL, Kobayashi R, Ratsep M, Freiberg A, Krausz E (2013) Sci. Rep. 3:2761CrossRefGoogle Scholar
  20. 20.
    Renger T, Muh F (2013) Phys. Chem. Chem. Phys. 15:3348CrossRefGoogle Scholar
  21. 21.
    Miliani C, Romani A, Favaro G (1998) Spectrochim. Acta A 54:581CrossRefGoogle Scholar
  22. 22.
    Pouli P, Selimis A, Georgiou S, Fotakis C (2010) Acc. Chem. Res. 43:771CrossRefGoogle Scholar
  23. 23.
    Fantacci S, Amat A, Sgamellotti A (2010) Acc. Chem. Res. 43:802CrossRefGoogle Scholar
  24. 24.
    Rosi F, Miliani C, Clementi C, Kahrim K, Presciutti F, Vagnini M, Manuali V, Daveri A, Cartechini L, Brunetti BG, Sgamellotti A (2010) Appl. Phys. A 100:613CrossRefGoogle Scholar
  25. 25.
    Amat A, Rosi F, Miliani C, Sgamellotti A, Fantacci S (2011) J. Mol. Struct. 993:43CrossRefGoogle Scholar
  26. 26.
    Carta L, Biczysko M, Bloino J, Licari D, Barone V (2014) Phys. Chem. Chem. Phys. 16:2897CrossRefGoogle Scholar
  27. 27.
    Grunenberg J (ed) (2010) Computational spectroscopy: methods, experiments and applications. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimGoogle Scholar
  28. 28.
    Quack M, Merkt F (eds) (2011) Handbook of high-resolution spectroscopy. Wiley, New YorkGoogle Scholar
  29. 29.
    Barone V (2014) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, New York. doi:10.1016/B978-0-12-409547-2.05400-7Google Scholar
  30. 30.
    Burke K, Werschnik J, Gross EKU (2005) J. Chem. Phys. 123:062206CrossRefGoogle Scholar
  31. 31.
    Casida ME (2009) J. Mol. Struct. Theochem. 914:3CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J. Chem. Theory Comput. 5:2420CrossRefGoogle Scholar
  33. 33.
    Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J. Chem. Theory Comput. 6:370CrossRefGoogle Scholar
  34. 34.
    Isegawa M, Peverati R, Truhlar DG (2012) J. Chem. Phys. 137:244104CrossRefGoogle Scholar
  35. 35.
    Furche F, Ahlrichs R (2004) J. Chem. Phys. 121:12772CrossRefGoogle Scholar
  36. 36.
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J. Chem. Phys. 124:094107CrossRefGoogle Scholar
  37. 37.
    Liu J, Liang W (2011) J. Chem. Phys. 135:184111CrossRefGoogle Scholar
  38. 38.
    Liu J, Liang W (2013) J. Chem. Phys. 138:024101CrossRefGoogle Scholar
  39. 39.
    Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F (2012) Phys. Chem. Chem. Phys. 14:12404CrossRefGoogle Scholar
  40. 40.
    Biczysko M, Bloino J, Brancato G, Cacelli I, Cappelli C, Ferretti A, Lami A, Monti S, Pedone A, Prampolini G, Puzzarini C, Santoro F, Trani F, Villani G (2012) Theor. Chem. Acc. 131:1201/1CrossRefGoogle Scholar
  41. 41.
    Barone V, Biczysko M, Bloino J, Carta L, Pedone A (2014) Comput. Theor. Chem. 1037:35CrossRefGoogle Scholar
  42. 42.
    Vazart F, Latouche C, Bloino J, Barone V (2015) Inorg. Chem. 54:5588CrossRefGoogle Scholar
  43. 43.
    Latouche C, Baiardi A, Barone V (2015) J. Phys. Chem. B 119:7253CrossRefGoogle Scholar
  44. 44.
    Chenu A, Christensson N, Kauffmann HF, Mancal T (2012) Sci. Rep. 3:2029Google Scholar
  45. 45.
    Kolli A, O’Reilly EJ, Scholes GD, Olaya-Castro A (2012) J. Chem. Phys. 137:174109CrossRefGoogle Scholar
  46. 46.
    Barone V, Biczysko M, Borkowska-Panek M, Bloino J (2014) ChemPhysChem 15:3355CrossRefGoogle Scholar
  47. 47.
    Etinski M, Petković M, Ristić MM, Marian CM (2015) J. Phys. Chem. B 119:10156CrossRefGoogle Scholar
  48. 48.
    Jacquemin D, Bremond E, Ciofini I, Adamo C (2012) J. Phys. Chem. Lett. 3:468CrossRefGoogle Scholar
  49. 49.
    Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) J. Chem. Phys. 126:084509CrossRefGoogle Scholar
  50. 50.
    Barone V, Bloino J, Biczysko M, Santoro F (2009) J. Chem. Theory Comput. 5:540CrossRefGoogle Scholar
  51. 51.
    Bloino J, Biczysko M, Santoro F, Barone V (2010) J. Chem. Theory Comput. 6:1256CrossRefGoogle Scholar
  52. 52.
    Baiardi A, Bloino J, Barone V (2013) J. Chem. Theory Comput. 9:4097CrossRefGoogle Scholar
  53. 53.
    Petrenko T, Neese F (2007) J. Chem. Phys. 127:164319CrossRefGoogle Scholar
  54. 54.
    Petrenko T, Neese F (2012) J. Chem. Phys. 137:234107CrossRefGoogle Scholar
  55. 55.
    Dierksen M, Grimme S (2004) J. Chem. Phys. 120:3544CrossRefGoogle Scholar
  56. 56.
    Jankowiak HC, Stuber JL, Berger R (2007) J. Chem. Phys. 127:234101CrossRefGoogle Scholar
  57. 57.
    Dierksen M, Grimme S (2005) J. Chem. Phys. 122:244101CrossRefGoogle Scholar
  58. 58.
    Barone V, Baiardi A, Bloino J (2014) Chirality 26:588CrossRefGoogle Scholar
  59. 59.
    Bloino J, Biczysko M, Barone V (2012) J. Chem. Theory Comput. 8:1015CrossRefGoogle Scholar
  60. 60.
    Bloino J, Barone V (2012) J. Chem. Phys. 136:124108CrossRefGoogle Scholar
  61. 61.
    Bloino J (2015) J. Phys. Chem. A 119:5269CrossRefGoogle Scholar
  62. 62.
    Baiardi A, Bloino J, Barone V (2014) J. Chem. Phys. 141:114108CrossRefGoogle Scholar
  63. 63.
    Licari D, Baiardi A, Biczysko M, Egidi F, Latouche C, Barone V (2015) J. Comput. Chem. 36:321CrossRefGoogle Scholar
  64. 64.
    Biczysko M, Bloino J, Santoro F, Barone V (2011) In: Barone V (ed) Computational strategies for spectroscopy, from small molecules to nano systems. Wiley, Chichester, pp 361–443CrossRefGoogle Scholar
  65. 65.
    Lami A, Santoro F (2011) In: Barone V (ed) Computational strategies for spectroscopy, from small molecules to nano systems. Wiley, Chichester, pp 475–516CrossRefGoogle Scholar
  66. 66.
    Clark RJ, Cooksey CJ, Daniels MA, Withnall R (1993) Endeavour 17:191CrossRefGoogle Scholar
  67. 67.
    Zollinger H (2003) Color chemistry. Syntheses, properties and application of organic dyes and pigments, 3rd revised edn. Wiley-VCH, WeinheimGoogle Scholar
  68. 68.
    Hunger K (ed) (2004) Industrial dyes. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimGoogle Scholar
  69. 69.
    Baeyer A, Drewsen V (1882) Ber. Deutsch. Chem. Ges. 15:2856CrossRefGoogle Scholar
  70. 70.
    Giustetto R, Xamena Llabrési FX, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J. Phys. Chem. B 109:19360CrossRefGoogle Scholar
  71. 71.
    Lüttke W, Hermann H, Klessinger M (1966) Angew. Chem. Int. Ed. 5:598CrossRefGoogle Scholar
  72. 72.
    Dähne S, Leupold D (1966) Angew. Chem. Int. Ed. 5:984CrossRefGoogle Scholar
  73. 73.
    Miehe G, Süsse P, Kupcik V, Egert E, Nieger M, Kunz G, Gerke R, Knieriem B, Niemeyer M, Lüttke W (1991) Angew. Chem. Int. Ed. 30:964CrossRefGoogle Scholar
  74. 74.
    Serrano-Andrés L, Roos BO (1997) Chem. Eur. J 3:717CrossRefGoogle Scholar
  75. 75.
    Jacquemin D, Preat J, Wathelet V, Perpète EA (2006) J. Chem. Phys. 124:074104CrossRefGoogle Scholar
  76. 76.
    Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J. Am. Chem. Soc. 128:2072CrossRefGoogle Scholar
  77. 77.
    Perpète EA, Jacquemin D (2009) J. Mol. Struct. Theochem. 914:100CrossRefGoogle Scholar
  78. 78.
    Yamazaki S, Sobolewski AL, Domcke W (2011) Phys. Chem. Chem. Phys. 13:1618CrossRefGoogle Scholar
  79. 79.
    Glowacki ED, Voss G, Sariciftci NS (2013) Adv. Mater. 25:6783CrossRefGoogle Scholar
  80. 80.
    Pina J, Seixas-de Melo JS, Eckert A, Scherf U (2015) J. Mater. Chem. A 3:6373CrossRefGoogle Scholar
  81. 81.
    Fukumoto H, Nakajima H, Kojima T, Yamamoto T (2014) Materials 7:2030CrossRefGoogle Scholar
  82. 82.
    Pramodini S, Poornesh P (2014) Opt. Laser Technol. 63:114CrossRefGoogle Scholar
  83. 83.
    Glowacki ED, Apaydin DH, Bozkurt Z, Monkowius U, Demirak K, Tordin E, Himmelsbach M, Schwarzinger C, Burian M, Lechner RT, Demitri N, Voss G, Sariciftci NS (2014) J. Mater. Chem. C 2:8089CrossRefGoogle Scholar
  84. 84.
    Robb MJ, Ku SY, Brunetti FG, Hawker CJ (2013) J. Polym. Sci. A Polym. Chem. 51:1263CrossRefGoogle Scholar
  85. 85.
    Becke AD (1993) J. Chem. Phys. 98:5648CrossRefGoogle Scholar
  86. 86.
    Yanai T, Tew DP, Handy NC (2004) Chem. Phys. Lett. 393:51CrossRefGoogle Scholar
  87. 87.
    Zhao Y, Schults NE, Truhlar DG (2006) J. Chem. Theory Comput. 2:364CrossRefGoogle Scholar
  88. 88.
    Zhao Y, Truhlar DG (2008) Theor. Chem. Acc. 120:215CrossRefGoogle Scholar
  89. 89.
    Chai JD, Head-Gordon M (2008) Phys. Chem. Chem. Phys. 10:6615CrossRefGoogle Scholar
  90. 90.
    Adamo C, Barone V (1999) J. Chem. Phys. 110:6158CrossRefGoogle Scholar
  91. 91.
    Double and triple-\(\zeta\) basis sets of sns family, are available in the download section. Last visited: February 1 2015
  92. 92.
    Carnimeo I, Puzzarini C, Tasinato N, Stoppa P, Charmet AP, Biczysko M, Cappelli C, Barone V (2013) J. Chem. Phys. 139:074310CrossRefGoogle Scholar
  93. 93.
    Barone V, Biczysko M, Bloino J (2014) Phys. Chem. Chem. Phys. 16:1759CrossRefGoogle Scholar
  94. 94.
    Bergner A, Dolg M, Kuchle W, Stoll H, Preuss H (1993) Mol. Phys. 80:1431CrossRefGoogle Scholar
  95. 95.
    Igelmann G, Stoll Preuss H (1988) Mol. Phys. 65:1321CrossRefGoogle Scholar
  96. 96.
    Tomasi J, Mennucci B, Cammi R (2005) Chem. Rev. 105:2999CrossRefGoogle Scholar
  97. 97.
    Cossi M, Scalmani G, Rega N, Barone V (2003) J. Comput. Chem. 24:669CrossRefGoogle Scholar
  98. 98.
    Baiardi A, Bloino J, Barone V (2015) J. Chem. Theory Comput. 11:3267CrossRefGoogle Scholar
  99. 99.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J. Chem. Phys. 132:154104CrossRefGoogle Scholar
  100. 100.
    Grimme S (2011) WIREs Comput. Mol. Sci. 1:211CrossRefGoogle Scholar
  101. 101.
    Cossi M, Barone V (2001) J. Chem. Phys. 115:4708CrossRefGoogle Scholar
  102. 102.
    Beck ME (2005) Int. J. Quantum Chem. 101:683CrossRefGoogle Scholar
  103. 103.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HR, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JRJ. A. Peralta, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01, gaussian Inc. Wallingford CTGoogle Scholar
  104. 104.
    Cui G, Thiel W (2012) Phys. Chem. Chem. Phys. 14:12378CrossRefGoogle Scholar
  105. 105.
    Huang K, Rhys A (1950) Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 204:406CrossRefGoogle Scholar
  106. 106.
    Fornaro T, Biczysko M, Monti S, Barone V (2014) Phys. Chem. Chem. Phys. 16:10112CrossRefGoogle Scholar
  107. 107.
    Fornaro T, Carnimeo I, Biczysko M (2015) J. Phys. Chem. A 119:5313CrossRefGoogle Scholar
  108. 108.
    Haucke G, Seidel B, Graness A (1987) J. Photochem. 37:139CrossRefGoogle Scholar
  109. 109.
    Gerke R, Fitjer L, Müller P (1999) Tetrahedron 55: 14429CrossRefGoogle Scholar
  110. 110.
    Wille E, Lüttke W (1971) Angew. Chem. Int. Ed. 10:803CrossRefGoogle Scholar
  111. 111.
    Haucke G, Graness G (1995) Angew. Chem. Int. Ed. 34:67CrossRefGoogle Scholar
  112. 112.
    Pummerer R, Marondel G (1960) Chem. Ber. 93:2834CrossRefGoogle Scholar
  113. 113.
    Clark RJH, Cooksey CJ (1999) N. J. Chem. 23:323CrossRefGoogle Scholar
  114. 114.
    Sadler PW (1956) J. Org. Chem. 21:316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vincenzo Barone
    • 1
  • Malgorzata Biczysko
    • 2
  • Camille Latouche
    • 1
  • Andrea Pasti
    • 1
  1. 1.Scuola Normale Superiore di PisaPisaItaly
  2. 2.International Center of Quantum and Molecular Structures, Physics DepartmentShanghai UniversityShanghaiChina

Personalised recommendations