Theoretical Chemistry Accounts

, 134:147 | Cite as

Helical molecular redox actuators with pancake bonds?

  • Pierre Beaujean
  • Miklos Kertesz
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of P. R. Surjan


In an attempt to design molecular electromechanical actuators with large deformation response, we present here three helicene-like compounds, which offer significant strain above 5 % due to two-electron charge transfer (CT). The shrinking induced by CT is a quantum mechanical orbital effect. A good π–π overlap across the helical pitch is critical for this type of actuation. The relevant overlap refers to frontier orbitals that are involved in the CT, and it has some features common with π–π stacking pancake bonds; however, these molecules do not represent all aspects of typical pancake bonding. This overlap is accompanied by a change in the bond length alternation pattern indicating significant change in π-conjugation. Additionally, two further helicene-like molecules included in this study also indicate large electromechanical actuation, but a simple orbital interpretation is not available in those cases.


Molecular actuators Charge transfer Helical structure π–π Overlap Density functional theory computations 



P. B. is grateful to the Fond d’aide à la mobilité étudiante (FAME) for a FAME/BMI traineeships grant and a Visiting Scientist Fellowship to Georgetown University. We thank the U S National Science Foundation for its support of this research at Georgetown University (Grant Number CHE-1006702). MK is member of the Georgetown Institute of Soft Matter.

Supplementary material

214_2015_1750_MOESM1_ESM.docx (402 kb)
Supplementary material 1 (DOCX 401 kb)


  1. 1.
    Baughman RH (2005) Science 308:63–65CrossRefGoogle Scholar
  2. 2.
    Mirfakhrai T, Madden JDW, Baughman RH (2007) Mater Today 10:30–38CrossRefGoogle Scholar
  3. 3.
    Göpel W (1991) Sens Actuators B Chem 4:7–21CrossRefGoogle Scholar
  4. 4.
    Smela E (2003) Adv Mater 15:481–494CrossRefGoogle Scholar
  5. 5.
    Terao F, Morimoto M, Irle M (2012) Angew Chem Int Ed 51:901–904CrossRefGoogle Scholar
  6. 6.
    Ebron VH, Yang Z, Seyer DJ, Kozlov ME, Oh J, Xie H, Razal J, Hall LJ, Ferraris JP, MacDiarmid AG, Baughman RH (2006) Science 311:1580–1583CrossRefGoogle Scholar
  7. 7.
    Yu HH, Swager TM (2004) IEEE J Ocean Eng 29:692–695CrossRefGoogle Scholar
  8. 8.
    Marsella MJ, Reid RJ (1999) Macromolecules 32:5982–5984CrossRefGoogle Scholar
  9. 9.
    Barboiu M, Vaughan G, Kyritsakas N, Lehn JM (2003) Chem Eur J 9:763–769CrossRefGoogle Scholar
  10. 10.
    Juluri BK, Kumar AS, Liu Y, Ye T, Yang YW, Flood AH, Fang L, Stoddart JF, Weiss PS, Huang TJ (2009) ACS Nano 3:291–300CrossRefGoogle Scholar
  11. 11.
    Huang TJ, Brough B, Ho C-M, Liu Y, Flood AH, Bonvallet PA, Tseng H-R, Stoddart JF, Baller M, Magonov S (2004) Appl Phys Lett 85:5391CrossRefGoogle Scholar
  12. 12.
    Madden JD, Cush RA, Kanigan TS, Brenan CJ, Hunter IW (1999) Synth Met 105:61–64CrossRefGoogle Scholar
  13. 13.
    Madden JD, Cush RA, Kanigan TS, Hunter IW (2000) Synth Met 113:185–192CrossRefGoogle Scholar
  14. 14.
    Qi B, Lu W, Mattes BR (2004) J Phys Chem B 108:6222–6227CrossRefGoogle Scholar
  15. 15.
    Tahhan M, Truong V-T, Spinks GM, Wallace GG (2003) Smart Mater Struct 12:626–632CrossRefGoogle Scholar
  16. 16.
    Han G, Shi G (2004) Sens Actuators B Chem 99:525–531CrossRefGoogle Scholar
  17. 17.
    Baughman RH (1999) Science 284(80):1340–1344CrossRefGoogle Scholar
  18. 18.
    Bissell RA, Córdova E, Kaifer AE, Stoddart JF (1994) Nature 369:133–137CrossRefGoogle Scholar
  19. 19.
    Credi A, Balzani V, Langford SJ, Stoddart JF (1997) J Am Chem Soc 119:2679–2681CrossRefGoogle Scholar
  20. 20.
    Tseng HR, Vignon SA, Stoddart JF (2003) Angew Chem Int Ed 42:1491–1495CrossRefGoogle Scholar
  21. 21.
    Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) Science 303:1845–1849CrossRefGoogle Scholar
  22. 22.
    Tian YH, Kertesz M (2009) Chem Mater 21:2149–2157CrossRefGoogle Scholar
  23. 23.
    Song C, Swager TM (2008) Org Lett 10:3575–3578CrossRefGoogle Scholar
  24. 24.
    Chebny VJ, Shukla R, Lindeman SV, Rathore R (2009) Org Lett 11:1939–1942CrossRefGoogle Scholar
  25. 25.
    Scherlis DA, Marzari N (2005) J Am Chem Soc 127:3207–3212CrossRefGoogle Scholar
  26. 26.
    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang JY (1999) J Am Chem Soc 121:1619–1620CrossRefGoogle Scholar
  27. 27.
    Zheng SJ, Lan J, Khan SI, Rubin Y (2003) J Am Chem Soc 125:5786–5791CrossRefGoogle Scholar
  28. 28.
    Small D, Rosokha SV, Kochi JK, Head-Gordon M (2005) J Phys Chem A 109:11261–11267CrossRefGoogle Scholar
  29. 29.
    Zaitsev V, Rosokha SV, Head-Gordon M, Kochi JK (2006) J Org Chem 71:520–526CrossRefGoogle Scholar
  30. 30.
    Haddon RC (2012) ChemPhysChem 13:3581–3583CrossRefGoogle Scholar
  31. 31.
    Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K (2006) J Am Chem Soc 128:2530–2531CrossRefGoogle Scholar
  32. 32.
    Tian YH, Kertesz M (2010) J Am Chem Soc 132(31):10648–10649CrossRefGoogle Scholar
  33. 33.
    Cui ZH, Lischka H, Beneberu HZ, Kertesz M (2014) J Am Chem Soc 136:5539–5542CrossRefGoogle Scholar
  34. 34.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  35. 35.
    Mou Z, Uchida K, Kubo T, Kertesz M (2014) J Am Chem Soc 136:18009–18022CrossRefGoogle Scholar
  36. 36.
    Rempala P, King BT (2006) J Chem Theory Comput 2:1112–1118CrossRefGoogle Scholar
  37. 37.
    Mathew SM, Hartley CS (2011) Macromolecules 44:8425–8432CrossRefGoogle Scholar
  38. 38.
    Mathew SM, Engle JT, Ziegler CJ, Hartley CS (2013) J Am Chem Soc 135:6714–6722CrossRefGoogle Scholar
  39. 39.
    Ohta E, Sato H, Ando S, Kosaka A, Fukushima T, Hashizume D, Yamasaki M, Hasegawa K, Muraoka A, Ushiyama H, Yamashita K, Aida T (2011) Nat Chem 3:68–73CrossRefGoogle Scholar
  40. 40.
    Kimura Y, Fukawa N, Miyauchi Y, Noguchi K, Tanaka K (2014) Angew Chem Int Ed 53:8480–8483CrossRefGoogle Scholar
  41. 41.
    Han S, Bond AD, Disch RL, Holmes D, Schulman JM, Teat SJ, Vollhardt KPC, Whitener GD (2002) Angew Chem Int Ed 114:3357–3361CrossRefGoogle Scholar
  42. 42.
    Sun G, Kürti J, Kertesz M, Baughman RH (2002) J Am Chem Soc 124:15076–15080CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Schultz EN, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  44. 44.
    Beneberu HZ, Tian TH, Kertesz M (2012) Phys Chem Chem Phys 14:10713–10725 Google Scholar
  45. 45.
    Frisch MJ et al (2013) Gaussian 09, Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  46. 46.
    Zhurko GA, Zhurko DA Chemcraft, Version 1.8 (2015).
  47. 47.
    Helix, in Wolfram Mathworld. Accessed on 13 May 2015
  48. 48.
    Longuet-Higgins HC, Salem L (1959) Proc R Soc A Math Phys Eng Sci 251:172–185CrossRefGoogle Scholar
  49. 49.
    Kertesz M, Choi CH, Yang SJ (2005) Chem Rev 105:3448–3481CrossRefGoogle Scholar
  50. 50.
    Nakagawa H, Yoshino J, Yamada K, Shiro M (2003) Chem Lett 32:90–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et StructuraleUniversité de NamurNamurBelgium
  2. 2.Department of Chemistry and Institute of Soft MatterGeorgetown UniversityWashingtonUSA

Personalised recommendations