Theoretical Chemistry Accounts

, 134:128 | Cite as

Photodissociation dynamics of the \(\hbox {D}_{2}^{+}\) ion initiated by several different laser pulses

Regular Article
Part of the following topical collections:
  1. Festschrift in honour of P. R. Surjan

Abstract

Nonadiabatic effects are ubiquitous in physics and chemistry. They are associated with conical intersections (CIs) which are degeneracies between electronic states of polyatomic molecules. Recently, it has been recognized that so-called light-induced conical intersections (LICIs) can be formed both by standing or by running laser waves even in diatomics. Owing to the strong nonadiabatic couplings, the appearance of such laser-induced conical intersections (LICIs) may significantly change the dynamical properties of a molecular system. In the present paper we investigate the photodissociation dynamics of \(\hbox {D}_{2}^{+}\) ion initiating the nuclear dynamics from the superposition of all the vibrational states produced by ionizing \(\hbox {D}_{2}\). The kinetic energy release and the angular distribution of the photodissociation products are computed with and without LICI for the several different values of the laser parameters. We performed both one- and two-dimensional calculations, as well. In the first scheme the molecules were rotationally frozen, whereas in the latter one, the molecular rotation is included as a full additional dynamic variable. The results obtained undoubtedly demonstrate that the impact of the LICI on the dissociation dynamics of the \(\hbox {D}_{2}^{+}\) molecule strongly depend upon the laser parameters applied.

Keywords

Photodissociation Nonadiabatic effect Laser-induced conical intersection Diatomic molecule Pulse length 

Notes

Acknowledgments

The authors acknowledge the financial support by the Deutsche Forschungsgemeinschaft (Project ID CE10/50-2). Á.V. acknowledges the OTKA Grant No. NN103251. The authors thank Lorenz Cederbaum for many fruitful discussions.

References

  1. 1.
    Born M, Oppenheimer JR (1927) Ann Phys 84:457CrossRefGoogle Scholar
  2. 2.
    Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59–246Google Scholar
  3. 3.
    Baer M (2002) Phys Rep 358:75–142CrossRefGoogle Scholar
  4. 4.
    Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127–158CrossRefGoogle Scholar
  5. 5.
    Domcke W, Yarkony DR, Köppel H (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Baer M (2006) Beyond born oppenheimer: electronic non-adiabatic coupling terms and conical intersections. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Matsika S (2007) Rev Comput Chem 23:83–124Google Scholar
  8. 8.
    Althorpe SC, Stecher T, Bouakline FJ (2008) Chem Phys 129:214117Google Scholar
  9. 9.
    Bouakline F (2014) Chem Phys 442:31–40CrossRefGoogle Scholar
  10. 10.
    Truhlar DG, Mead A (2003) Phys Rev A 68:032501CrossRefGoogle Scholar
  11. 11.
    Tishchenko O, Li R, Truhlar DG (2010) PNAS 107:19139–19145CrossRefGoogle Scholar
  12. 12.
    Moiseyev N, Sindelka M, Cederbaum LS (2008) J Phys B 41:221001–221006CrossRefGoogle Scholar
  13. 13.
    Sindelka M, Moiseyev N, Cederbaum LS (2011) J Phys B 44:045603–045606CrossRefGoogle Scholar
  14. 14.
    Halász GJ, Vibók Á, Sindelka M, Moiseyev N, Cederbaum LS (2011) J Phys B 44:175102–175112CrossRefGoogle Scholar
  15. 15.
    Halász GJ, Sindelka M, Moiseyev N, Cederbaum LS, Vibók Á (2012) J Phys Chem A 116:2636–2643CrossRefGoogle Scholar
  16. 16.
    Halász GJ, Vibók Á, Sindelka M, Cederbaum LS, Moiseyev N (2012) Chem Phys 399:146–150CrossRefGoogle Scholar
  17. 17.
    Halász GJ, Vibók Á, Moiseyev N, Cederbaum LS (2012) J Phys B 45:135101–135110CrossRefGoogle Scholar
  18. 18.
    Halász GJ, Vibók Á, Meyer HD, Cederbaum LS (2013) J Phys Chem A 117:8528–8535CrossRefGoogle Scholar
  19. 19.
    Halász GJ, Vibók Á, Moiseyev N, Cederbaum LS (2013) Phys Rev A 88:043413-6Google Scholar
  20. 20.
    Halász GJ, Csehi A, Vibók Á, Cederbaum LS (2014) J Phys Chem A 118:11908–11915CrossRefGoogle Scholar
  21. 21.
    Halász GJ, Vibók Á, Cederbaum LS (2015) J Phys Chem Lett 6:348–354CrossRefGoogle Scholar
  22. 22.
    Cederbaum LS, Chiang YC, Demekhin PV, Moiseyev N (2011) Phys Rev Lett 106:123001–123005CrossRefGoogle Scholar
  23. 23.
    Demekhin PV, Chiang YC, Cederbaum LS (2011) Phys Rev A 84:033417CrossRefGoogle Scholar
  24. 24.
    Demekhin PV, Cederbaum LS (2013) J Phys B 46:164008CrossRefGoogle Scholar
  25. 25.
    Estrada H, Cederbaum LS, Domcke W (1986) J Chem Phys 84:152CrossRefGoogle Scholar
  26. 26.
    Feuerbacher S, Sommerfeld T, Cederbaum LS (2004) J Chem Phys 120:3201CrossRefGoogle Scholar
  27. 27.
    Demekhin PV, Cederbaum LS (2013) J Chem Phys 139:154314–154315CrossRefGoogle Scholar
  28. 28.
    Natan A, Ware MR, Bucksbaum PH (2015) Book of ultrafast phenomena XIX Springer proceedings in physics, vol 162, pp 122–125Google Scholar
  29. 29.
    Kim J, Tao H, White JL, Petrović VS, Martinez TJ, Bucksbaum PH (2012) J Phys Chem A 116:2758–2763CrossRefGoogle Scholar
  30. 30.
    Kim J, Tao H, Martinez TJ, Bucksbaum PH (2015) J Phys B 48:164003–164010CrossRefGoogle Scholar
  31. 31.
    Corrales ME, González-Vázquez J, Balerdi G, Solá IR, de Nalda R, Bañares L (2014) Nat Chem 6:785–790CrossRefGoogle Scholar
  32. 32.
    Sola IR, González-Vázquez J, de Nalda R, Bañares L (2015) Phys Chem Chem Phys 17:13183–13200CrossRefGoogle Scholar
  33. 33.
    Zavriyev A, Bucksbaum PH, Muller HG, Schumacher DV (1990) Phys Rev A 42:5500–5513CrossRefGoogle Scholar
  34. 34.
    Bandrauk AD, Sink M (1978) Chem Phys Lett 57:569–572CrossRefGoogle Scholar
  35. 35.
    Bandrauk AD, Sink M (1981) J Chem Phys 74:1110–1117CrossRefGoogle Scholar
  36. 36.
    Aubanel EE, Gauthier JM, Bandrauk AD (1993) Phys Rev A 48:2145–2152CrossRefGoogle Scholar
  37. 37.
    Charron E, Giusti-Suzor A, Mies FH (1994) Phys Rev A 49:R641–R644CrossRefGoogle Scholar
  38. 38.
    Chelkowski S, Zuo T, Atabek O, Bandrauk AD (1995) Phys Rev A 52:2977–2983CrossRefGoogle Scholar
  39. 39.
    Giusti-Suzor A, Mies FH, DiMauro LF, Charron E, Yang B (1995) J Phys B 28:309–339CrossRefGoogle Scholar
  40. 40.
    Numico R, Keller A, Atabek O (1995) Phys Rev A 52:1298–1309CrossRefGoogle Scholar
  41. 41.
    Sandig K, Figger H, Hansch TV (2000) Phys Rev Lett 85:4876–4879CrossRefGoogle Scholar
  42. 42.
    Serov VN, Keller A, Atabek O, Billy N (2003) Phys Rev A 68:053401-16CrossRefGoogle Scholar
  43. 43.
    Posthumus JH (2004) Rep Prog Phys 67:623–665CrossRefGoogle Scholar
  44. 44.
    Serov VN, Keller A, Atabek O, Figger H, Pavidic D (2005) Phys Rev A 72:033413-21CrossRefGoogle Scholar
  45. 45.
    Uhlmann M, Kunert T, Schmidt R (2005) Phys Rev A 72:045402-5CrossRefGoogle Scholar
  46. 46.
    Wang PQ et al (2006) Phys Rev A 74:043411-21Google Scholar
  47. 47.
    Anis F, Esry BD (2008) Phys Rev A 77:033416-11CrossRefGoogle Scholar
  48. 48.
    Anis F, Cackowski T, Esry BD (2009) J Phys B Fast Track Com 42:091001-6Google Scholar
  49. 49.
    Hua JJ, Esry BD (2009) Phys Rev A 80:013413-19CrossRefGoogle Scholar
  50. 50.
    Adhikari S et al (2009) J Phys Chem A 113:7331–7337Google Scholar
  51. 51.
    Paul AK, Adhikari S, Baer M (2010) Baer R 81:013412-10Google Scholar
  52. 52.
    Thumm U, Niederhausen T, Feuerstein B (2008) Phys Rev A 77:063401-12CrossRefGoogle Scholar
  53. 53.
    Fischer M et al (2011) New J Phys 13:053019-14CrossRefGoogle Scholar
  54. 54.
    Fischer M, Lorenz U, Schmidt B, Schmidt R (2011) Phys Rev A 84:033422-5Google Scholar
  55. 55.
    McKenna J, Anis F, Sayler AM, Gaire B, Johnson NG, Parke E, Carnes KD, Esry BD, Ben-Itzhak I (2012) Phys Rev A 85:023405-15CrossRefGoogle Scholar
  56. 56.
    He HX, Lu RF, Zhang PY, Han KL, He GZ (2012) J Chem Phys 136:024311-6Google Scholar
  57. 57.
    Furukawa Y, Nabekawa Y, Okino T, Eilanlou AA, Takahashi EJ, Lan P, Ishikawa KL, Sato T, Yamanouchi K, Midorikawa K (2012) Opt Lett 37:2922–2924CrossRefGoogle Scholar
  58. 58.
    Bunkin FV, Tugov II (1973) Phys Rev A 8:601–612CrossRefGoogle Scholar
  59. 59.
    Chu SI, Laughlin C, Datta K (1983) Chem Phys Lett 98:476–481CrossRefGoogle Scholar
  60. 60.
    Meyer HD, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73–78CrossRefGoogle Scholar
  61. 61.
    Manthe U, Meyer HD, Cederbaum LS (1992) J Chem Phys 97:3199–3213CrossRefGoogle Scholar
  62. 62.
    Beck MH, Jäckle A, Worth GA, Meyer HD (2000) Phys Rep 324:1–105CrossRefGoogle Scholar
  63. 63.
    Worth GA et al. The MCTDH package, version 8.2; University of Heidelberg: Heidelberg, Germany, 2000. H. D. Meyer et al. The MCTDH package, versions 8.3 and 8.4; University of Heidelberg, Germany, 2002 and 2007. http://mctdh.uni-hd.de/
  64. 64.
    Meyer HD, Gatti F, Worth GA (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gábor J. Halász
    • 1
  • András Csehi
    • 2
  • Ágnes Vibók
    • 2
    • 3
  1. 1.Department of Information TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary
  3. 3.ELI-ALPS, ELI-HU Non-Profit LtdSzegedHungary

Personalised recommendations