Theoretical Chemistry Accounts

, 134:144 | Cite as

Validation of a computational protocol to simulate near IR phosphorescence spectra for Ru(II) and Ir(III) metal complexes

  • Fanny Vazart
  • Camille Latouche
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective


Herein we report a comprehensive investigation on the luminescent properties of a Ru(II) and an Ir(III) (d6 metal) complex using quantum mechanics. The investigated transition metal complexes are of large interest for biological and technological systems. They possess a singular emission signature above 700 nm and therefore are crucial targets for our simulation model. In this paper, we provide computations on geometric and electronic structure. We also assign the absorption band of one complex using the TD-DFT approach and we simulate the phosphorescence spectra of both taking into account the vibrational contributions to the electronic transitions. Our results are directly compared to experimental ones in order to assess and validate our protocol.


Vibronic coupling Simulated phosphorescence d6 Metal Near IR 



We thank Dr. Julien Bloino for fruitful discussions.

Supplementary material

214_2015_1737_MOESM1_ESM.docx (15.2 mb)
Supplementary material 1 Optimized structures of the singlet and the triplet states together with their electronic energies, transitions and the frontier MOs of 2, energy difference between singlet and triplet excited state and bond length variation of the π backbone of complex 2 (DOCX 15569 kb)


  1. 1.
    Orellana G, García-Fresnadillo D (2004) Environmental and industrial optosensing with tailored luminescent Ru(II) polypyridyl complexes. Opt. sensors SE-13. Springer, Berlin, pp 309–357Google Scholar
  2. 2.
    Chou C-C, Hu F-C, Yeh H-H et al (2014) Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. Angew Chem Int Ed 53:178–183. doi: 10.1002/anie.201305975 CrossRefGoogle Scholar
  3. 3.
    Guimaraes RR, Parussulo ALA, Toma HE, Araki K (2013) New tunable ruthenium complex dyes for TiO2 solar cells. Inorganica Chim Acta 404:23–28. doi: 10.1016/j.ica.2013.04.016 CrossRefGoogle Scholar
  4. 4.
    Kinoshita T, Dy JT, Uchida S et al (2013) Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nat Phot 7:535–539CrossRefGoogle Scholar
  5. 5.
    Clarke MJ (1997) Electron transfer reactions. Electron Transf React. doi: 10.1021/ba-1997-0253 Google Scholar
  6. 6.
    Heinze K, Hempel K, Tschierlei S et al (2009) Resonance Raman studies of bis(terpyridine)ruthenium(II) amino acid esters and diesters. Eur J Inorg Chem 2009:3119–3126. doi: 10.1002/ejic.200900309 CrossRefGoogle Scholar
  7. 7.
    Bhuiyan A, Kincaid JR (1998) Synthesis and photophysical properties of zeolite-entrapped bisterpyridine ruthenium(II). Dramatic consequences of ligand-field-state destabilization. Inorg Chem 37:2525–2530. doi: 10.1021/ic970950u CrossRefGoogle Scholar
  8. 8.
    Muhavini Wawire C, Jouvenot D, Loiseau F et al (2013) Density-functional study of luminescence in polypyridine ruthenium complexes. J Photochem Photobiol A Chem 276:8–15. doi: 10.1016/j.jphotochem.2013.10.018 CrossRefGoogle Scholar
  9. 9.
    Bergeron BV, Meyer GJ (2002) Reductive electron transfer quenching of MLCT excited states bound to nanostructured metal oxide thin films. J Phys Chem B 107:245–254. doi: 10.1021/jp026823n CrossRefGoogle Scholar
  10. 10.
    Johansson PG, Kopecky A, Galoppini E, Meyer GJ (2013) Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged RuII–isothiocyanate compounds. J Am Chem Soc 135:8331–8341. doi: 10.1021/ja402193f CrossRefGoogle Scholar
  11. 11.
    Lundqvist MJ, Galoppini E, Meyer GJ, Persson P (2007) Calculated optoelectronic properties of ruthenium tris-bipyridine dyes containing oligophenyleneethynylene rigid rod linkers in different chemical environments. J Phys Chem A 111:1487–1497. doi: 10.1021/jp064219x CrossRefGoogle Scholar
  12. 12.
    Schoonover JR, Bates WD, Meyer TJ (1995) Application of Resonance Raman spectroscopy to electronic structure in metal complex excited states. Excited-state ordering and electron delocalization in dipyrido[3,2-a:2′,3′-c]phenazine (dppz): complexes of Re(I) and Ru(II). Inorg Chem 34:6421–6422. doi: 10.1021/ic00130a004 CrossRefGoogle Scholar
  13. 13.
    Barone V, Biczysko M, Bloino J (2014) Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation. Phys Chem Chem Phys 16:1759–1787. doi: 10.1039/c3cp53413h CrossRefGoogle Scholar
  14. 14.
    Biczysko M, Panek P, Scalmani G et al (2010) Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method. J Chem Theory Comput 6:2115–2125CrossRefGoogle Scholar
  15. 15.
    Baiardi A, Bloino J, Barone V (2015) Accurate simulation of Resonance-Raman spectra of flexible molecules: an internal coordinates approach. J Chem Theory Comput. doi: 10.1021/acs.jctc.5b00241. doi: 10.1021/acs.jctc.5b00241
  16. 16.
    Baiardi A, Latouche C, Bloino J, Barone V (2014) Accurate yet feasible computations of resonance Raman spectra for metal complexes in solution: [Ru(bpy)3](2+) as a case study. Dalton Trans 43:17610–17614. doi: 10.1039/c4dt02151g CrossRefGoogle Scholar
  17. 17.
    Green K, Gauthier N, Sahnoune H et al (2013) Covalent immobilization of redox-active Fe(κ2-dppe)(η5-C5Me5)-based π-conjugated wires on oxide-free hydrogen-terminated silicon surfaces. Organometallics 32:5333–5342. doi: 10.1021/om4006017 CrossRefGoogle Scholar
  18. 18.
    Sahnoune H, Baranová Z, Bhuvanesh N et al (2013) A metal-capped conjugated polyyne threaded through a phenanthroline-based macrocycle. Probing beyond the mechanical bond to interactions in interlocked molecular architectures. Organometallics 32:6360–6367. doi: 10.1021/om400709q CrossRefGoogle Scholar
  19. 19.
    Makhoul R, Sahnoune H, Davin T et al (2014) Proton-controlled regioselective synthesis of [Cp*(dppe)Fe–C ≡ C-1-(η 6 -C 10 H 7)Ru(η 5 -Cp](PF 6) and electron-driven haptotropic rearrangement of the (η 5 -Cp)Ru + Arenophile. Organometallics 33:4792–4802. doi: 10.1021/om500047k CrossRefGoogle Scholar
  20. 20.
    Green K, Gauthier N, Sahnoune H et al (2013) Synthesis and characterization of redox-active mononuclear Fe(κ2-dppe)(η5-C5Me5)-terminated π-conjugated wires. Organometallics 32:4366–4381. doi: 10.1021/om400515g CrossRefGoogle Scholar
  21. 21.
    Latouche C, Liu CW, Saillard J-Y (2014) Encapsulating hydrides and main-group anions in d10-metal clusters stabilized by 1,1-dichalcogeno ligands. J Clust Sci 25:147–171. doi: 10.1007/s10876-013-0671-3 CrossRefGoogle Scholar
  22. 22.
    Liao J-H, Latouche C, Li B et al (2014) A twelve-coordinated iodide in a cuboctahedral silver(I) skeleton. Inorg Chem 53:2260–2267. doi: 10.1021/ic402960e CrossRefGoogle Scholar
  23. 23.
    Latouche C, Lin Y-R, Tobon Y et al (2014) Au-Au chemical bonding induced by UV irradiation of dinuclear gold(i) complexes: a computational study with experimental evidence. Phys Chem Chem Phys 16:25840–25845. doi: 10.1039/c4cp03990d CrossRefGoogle Scholar
  24. 24.
    Latouche C, Kahlal S, Furet E et al (2013) Shape modulation of octanuclear Cu(I) or Ag(I) dichalcogeno template clusters with respect to the nature of their encapsulated anions: a combined theoretical and experimental investigation. Inorg Chem 52:7752–7765. doi: 10.1021/ic400959a CrossRefGoogle Scholar
  25. 25.
    Latouche C, Kahlal S, Lin Y-R et al (2013) Anion encapsulation and geometric changes in hepta- and hexanuclear copper(I) dichalcogeno clusters: a theoretical and experimental investigation. Inorg Chem 52:13253–13262. doi: 10.1021/ic402207u CrossRefGoogle Scholar
  26. 26.
    Fabian J (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dye Pigment 84:36–53. doi: 10.1016/j.dyepig.2009.06.008 CrossRefGoogle Scholar
  27. 27.
    Jacquemin D, Preat J, Wathelet V et al (2006) Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc 128:2072–2083. doi: 10.1021/ja056676h CrossRefGoogle Scholar
  28. 28.
    Jacquemin D, Perpète EA, Scuseria GE et al (2008) Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem Phys Lett 465:226–229. doi: 10.1016/j.cplett.2008.09.071 CrossRefGoogle Scholar
  29. 29.
    Jacquemin D, Perpète EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135. doi: 10.1021/ct700187z CrossRefGoogle Scholar
  30. 30.
    Bloino J, Biczysko M, Barone V (2012) General perturbative approach for spectroscopy, thermodynamics, and kinetics: methodological background and benchmark studies. J Chem Theory Comput 8:1015–1036. doi: 10.1021/ct200814m CrossRefGoogle Scholar
  31. 31.
    Puzzarini C, Biczysko M, Barone V (2010) Accurate harmonic/anharmonic vibrational frequencies for open-shell systems: performances of the B3LYP/N07D model for semirigid free radicals benchmarked by CCSD(T) computations. J Chem Theory Comput 6:828–838. doi: 10.1021/ct900594h CrossRefGoogle Scholar
  32. 32.
    Bloino J, Biczysko M, Santoro F, Barone V (2010) General approach to compute vibrationally resolved one-photon electronic spectra. J Chem Theory Comput 6:1256–1274CrossRefGoogle Scholar
  33. 33.
    Latouche C, Palazzetti F, Skouteris D, Barone V (2014) High accuracy vibrational computations for transition metal complexes including anharmonic corrections: ferrocene, Ruthenocene and Osmocene as test cases. J Chem Theory Comput 10:4565–4573. doi: 10.1021/ct5006246 CrossRefGoogle Scholar
  34. 34.
    Vlček A, Záliš S (2007) Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coord Chem Rev 251:258–287. doi: 10.1016/j.ccr.2006.05.021 CrossRefGoogle Scholar
  35. 35.
    Barone V, Baiardi A, Biczysko M et al (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422CrossRefGoogle Scholar
  36. 36.
    Licari D, Baiardi A, Biczysko M et al (2015) Implementation of a graphical user interface for the virtual multifrequency spectrometer: the VMS-Draw tool. J Comput Chem 36:321–334. doi: 10.1002/jcc.23785 CrossRefGoogle Scholar
  37. 37.
    Latouche C, Baiardi A, Barone V (2015) Virtual eyes designed for quantitative spectroscopy of inorganic complexes: vibronic signatures in the phosphorescence spectra of terpyridine derivatives. J Phys Chem B. doi: 10.1021/jp510589u. doi: 10.1021/jp510589u
  38. 38.
    Vazart F, Latouche C, Bloino J, Barone V (2015) Vibronic coupling investigation to compute phosphorescence spectra of Pt(II) complexes. Inorg Chem 54:5588–5595. doi: 10.1021/acs.inorgchem.5b00734 CrossRefGoogle Scholar
  39. 39.
    Schulze M, Steffen A, Würthner F (2015) Near-IR phosphorescent ruthenium(II) and iridium(III) perylene bisimide metal complexes. Angew Chem Int Ed 54:1570–1573. doi: 10.1002/anie.201410437 CrossRefGoogle Scholar
  40. 40.
    Frisch MJ et al. (2009) Gaussian 09Google Scholar
  41. 41.
    Bortoluzzi M, Paolucci G, Pitteri B (2011) Ground-state properties of ruthenium(II) and osmium(II) tin trihydride complexes: a DFT study. Polyhedron 30:1524–1529. doi: 10.1016/j.poly.2011.03.010 CrossRefGoogle Scholar
  42. 42.
    Nozaki K (2006) Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir (2-phenylpyridine) 3). J Chin Chem Soc 53:101–112Google Scholar
  43. 43.
    Tsai C-N, Allard MM, Lord RL et al (2011) Characterization of low energy charge transfer transitions in (terpyridine)(bipyridine)ruthenium(II) complexes and their cyanide-bridged bi- and tri-metallic analogues. Inorg Chem 50:11965–11977. doi: 10.1021/ic2010387 CrossRefGoogle Scholar
  44. 44.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. doi: 10.1103/PhysRevB.33.8822 CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. doi: 10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  46. 46.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  47. 47.
    Dunning Jr TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer III H (ed) Methods electron. Struct. theory SE—1. Springer, US, pp 1–27Google Scholar
  48. 48.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. doi: 10.1063/1.448800 CrossRefGoogle Scholar
  49. 49.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. doi: 10.1063/1.448975 CrossRefGoogle Scholar
  50. 50.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi: 10.1063/1.448799 CrossRefGoogle Scholar
  51. 51.
    Mennucci B, Tomasi J, Cammi R et al (2002) Polarizable {C}ontinuum {M}odel ({PCM}): calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113CrossRefGoogle Scholar
  52. 52.
    Cammi R, Mennucci B (2007) Continuum solvation models in chemical physics. New York: WileyGoogle Scholar
  53. 53.
    Barone V, Biczysko M, Bloino J et al (2012) Toward anharmonic computations of vibrational spectra for large molecular systems. Int J Quantum Chem 112:2185–2200. doi: 10.1002/qua.23224 CrossRefGoogle Scholar
  54. 54.
    Gourlaouen C, Daniel C (2014) Spin-orbit effects in square-planar Pt(ii) complexes with bidentate and terdentate ligands: theoretical absorption/emission spectroscopy. Dalton Trans 43:17806–17819. doi: 10.1039/C4DT01822B CrossRefGoogle Scholar
  55. 55.
    Brahim H, Daniel C (2014) Structural and spectroscopic properties of Ir(III) complexes with phenylpyridine ligands: absorption spectra without and with spin–orbit-coupling. Comput Theor Chem 1040–1041:219–229. doi: 10.1016/j.comptc.2014.01.030 CrossRefGoogle Scholar
  56. 56.
    Brahim H, Daniel C, Rahmouni A (2012) Spin–orbit absorption spectroscopy of transition metal hydrides: a TD-DFT and MS-CASPT2 study of HM(CO)5 (M = Mn, Re). Int J Quantum Chem 112:2085–2097. doi: 10.1002/qua.23219 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Institut des Matériaux Jean Rouxel (IMN)Université de Nantes, CNRSNantes Cedex 03France

Personalised recommendations