Advertisement

Theoretical Chemistry Accounts

, 134:133 | Cite as

Insights into the chemical meanings of the reaction electronic flux

  • Christophe MorellEmail author
  • Vincent TognettiEmail author
  • Emmanuelle Bignon
  • Elise Dumont
  • Noemi Hernandez-Haro
  • Barbara Herrera
  • André Grand
  • Soledad Gutiérrez-Oliva
  • Laurent Joubert
  • Alejandro Toro-Labbé
  • Henry Chermette
Regular Article

Abstract

The negative derivative of the chemical potential with respect to the reaction coordinate is called reaction electronic flux and has recently focused a wide interest to better understand chemical reactions at molecular level. After much consideration, it is now well accepted that positive REF values are associated with spontaneous processes, while negative REF ones translate unspontaneous phenomena. These characteristics of the REF are based on a thermodynamic analogy and have been shown right through computational results. In this paper, we develop two analytical expressions of the REF in both the canonical and the grand canonical ensembles. The connection between both equations is established. They are then analyzed, and some arguments are put forward to support the alleged characteristic of the REF and its ability to properly discriminate spontaneous from unspontaneous phenomena.

Keywords

Conceptual DFT Chemical potential Reaction electronic flux Spontaneous process 

Notes

Acknowledgments

The research benefited from the support of Aviesan ITMO Cancer within the ‘‘Cancer Plan 2009–2013’’ and the application of Action 3.3. CM, AG, HC, ATL, BH and SG-O thank the joint program ECOS-CONICYT through action project ECOS No. C11E03. V.T. and L.J. gratefully acknowledge the Centre National de la Recherche Scientifique (CNRS) for a “Chaire d’Excellence” at the University of Rouen, the LABEX SynOrg for funding, and the CRIHAN computational centre for providing computational resources. HC acknowledges the GENCI/CINES for HPC resources/computer time (Project cpt2130). ATL, BH, SG-O acknowledge Project Nucleus Millenium CPC: ICM No. 120082 and Projects FONDECYT Nos. 1120093, 1130072 and 1141098.

References

  1. 1.
    Quapp W (2008) Chemical reaction paths and calculus of variations. Theor Chem Acc 121:227–237CrossRefGoogle Scholar
  2. 2.
    Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  3. 3.
    Fukui K (1981) The path of chemical reaction—the irc approach. Acc Chem Res 14:363–368CrossRefGoogle Scholar
  4. 4.
    Basilevsky MV, Shamov AG (1981) The local definition of the optimum ascent path on a multi-dimensional potential energy surface and its practical application for the location of saddle points. Chem Phys 60:347–358CrossRefGoogle Scholar
  5. 5.
    Elber R, Karplus M (1987) A method for determining reaction paths in large molecules: application to myoglobin. Chem Phys Lett 139:375–380CrossRefGoogle Scholar
  6. 6.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  7. 7.
    Gázquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10Google Scholar
  8. 8.
    Chermette H (1998) Chemical reactivity indexes in density. J Comput Chem 20:129–154CrossRefGoogle Scholar
  9. 9.
    Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–374CrossRefGoogle Scholar
  10. 10.
    Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103:4398–4403CrossRefGoogle Scholar
  11. 11.
    Bonnet M-L, Tognetti V (2011) The influence of density functional approximations on the description of LiH + NH3 → LiNH2 + H2 reaction. Chem Phys Lett 511:427–433CrossRefGoogle Scholar
  12. 12.
    Datta D (1992) “Hardness profile” of a reaction path. J Phys Chem 96:2409–2410CrossRefGoogle Scholar
  13. 13.
    De Proft F, Chattaraj PK, Ayers PW et al (2008) Initial hardness response and hardness profiles in the study of Woodward–Hoffmann rules for electrocyclizations. J Chem Theory Comput 4:595–602CrossRefGoogle Scholar
  14. 14.
    Ess DH (2009) Distortion, interaction, and conceptual DFT perspectives of MO4–alkene (M = Os, Re, Tc, Mn) cycloadditions. J Org Chem 74:1498–1508CrossRefGoogle Scholar
  15. 15.
    Mineva T, Russo N, Sicilia E, Toscano M (1997) Density functional potential-energy hypersurface and reactivity indices in the isomerization of X3H+ (X = O, S, Se, Te). J Chem Soc, Faraday Trans 93:3309–3312CrossRefGoogle Scholar
  16. 16.
    Mineva T, Sicilia E, Russo N (1998) Density-functional approach to hardness evaluation and its use in the study of the maximum hardness principle. J Am Chem Soc 120:9053–9058CrossRefGoogle Scholar
  17. 17.
    Ghanty TK, Gosh SK (1996) A Density functional approach to hardness, polarizability, and valency of molecules in chemical reactions. J Phys Chem 100:12295–12298CrossRefGoogle Scholar
  18. 18.
    Labet V, Morell C, Toro-Labbé A, Grand A (2010) Is an elementary reaction step really elementary? Theoretical decomposition of asynchronous concerted mechanisms. Phys Chem Chem Phys 12:4142–4151CrossRefGoogle Scholar
  19. 19.
    Pan S, Solà M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852CrossRefGoogle Scholar
  20. 20.
    Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113:257–266CrossRefGoogle Scholar
  21. 21.
    Morell C, Labet V, Grand A, Chermette H (2009) Minimum electrophilicity principle: an analysis based upon the variation of both chemical potential and absolute hardness. Phys Chem Chem Phys 11:3417–3423CrossRefGoogle Scholar
  22. 22.
    Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072CrossRefGoogle Scholar
  23. 23.
    Morell C, Herrera B, Gutiérrez-Oliva S et al (2012) A relation between Different Scales of Electrophilicity: Are the scales consistent along a chemical reaction? J Phys Chem A 116:7074–7081CrossRefGoogle Scholar
  24. 24.
    Borgoo A, Jaque P, Toro-Labbé A et al (2009) Analyzing Kullback–Leibler information profiles: an indication of their chemical relevance. Phys Chem Chem Phys 11:476–482CrossRefGoogle Scholar
  25. 25.
    Jędrzejewski M, Ordon P, Komorowski L (2013) Variation of the electronic dipole polarizability on the reaction path. J Mol Model 19:4203–4207CrossRefGoogle Scholar
  26. 26.
    Morales-Bayuelo A, Pan S, Caballero J, Chattaraj PK (2015) Analyzing torquoselectivity in electrocyclic ring opening reactions of trans-3,4-dimethylcyclobutene and 3-formylcyclobutene through electronic structure principles. Phys Chem Chem Phys 17:23104–23111CrossRefGoogle Scholar
  27. 27.
    Herrera B, Toro-Labbé A (2004) The role of the reaction force to characterize local specific interactions that activate the intramolecular proton transfers in DNA basis. J Chem Phys 121:7096–7102CrossRefGoogle Scholar
  28. 28.
    Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Model 15:707–710CrossRefGoogle Scholar
  29. 29.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S et al (2005) The reaction force: three key points along an intrinsic reaction coordinate. J Chem Sci 117:467–472CrossRefGoogle Scholar
  30. 30.
    Rincón E, Jaque P, Toro-Labbé A (2006) Reaction force analysis of the effect of Mg(II) on the 1,3 intramolecular hydrogen transfer in thymine. J Phys Chem A 110:9478–9485CrossRefGoogle Scholar
  31. 31.
    Labet V, Morell C, Grand A, Toro-Labbé A (2008) Theoretical study of cytosine deamination from the perspective of the reaction force analysis. J Phys Chem A 112:11487–11494CrossRefGoogle Scholar
  32. 32.
    Cerón ML, Herrera B, Araya P et al (2011) The mechanism of methanol decomposition by CuO. A theoretical study based on the reaction force and reaction electronic flux analysis. J Mol Model 17:1625–1633CrossRefGoogle Scholar
  33. 33.
    Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chem Phys Lett 456:135–140CrossRefGoogle Scholar
  34. 34.
    Echegaray E, Toro-Labbé A (2008) Reaction electronic flux: a new concept to get insights into reaction mechanisms. Study of model symmetric nucleophilic substitutions. J Phys Chem A 112:11801–11807CrossRefGoogle Scholar
  35. 35.
    Vogt-Geisse S, Toro-Labbé A (2009) The mechanism of the interstellar isomerization reaction HOC+ → HCO+ catalyzed by H2: new Insights from the reaction electronic flux. J Chem Phys 130:244308CrossRefGoogle Scholar
  36. 36.
    Flores-Morales P, Gutiérrez-Oliva S, Silva E, Toro-Labbé A (2010) The reaction electronic flux: a new descriptor of the electronic activity taking place during a chemical reaction. Application to the characterization of the mechanism of the Schiff’s base formation in the Maillard reaction. J Mol Struct Theochem 943:121–126CrossRefGoogle Scholar
  37. 37.
    Martínez-Araya JI, Toro-Labbé A (2015) Reaction electronic flux as a fluctuation of relative interatomic electronic populations. J Phys Chem C 119:3040–3049CrossRefGoogle Scholar
  38. 38.
    Inostroza-Rivera R, Yahia-Ouahmed M, Tognetti V et al (2015) Atomic decomposition of conceptual DFT descriptors: application to proton transfer reactions. Phys Chem Chem Phys 17:17797–17808CrossRefGoogle Scholar
  39. 39.
    Lamsabhi AM, Gutiéerrez-Oliva S, Mó O, Toro-Labbé A, Yáñez M (2015) Effects of the ionization in the tautomerism of uracil: a reaction electronic flux perspective. J Comput Chem. doi: 10.1002/jcc.24054 Google Scholar
  40. 40.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  41. 41.
    Parr RG, Gazquez JL (1993) Hardness functional. J Phys Chem 7:3939–3940CrossRefGoogle Scholar
  42. 42.
    Liu S, De Proft F, Parr RG (1997) Simplified models for hardness kernel and calculations of global hardness. J Phys Chem A 101:6991–6997CrossRefGoogle Scholar
  43. 43.
    Torrent-Sucarrat M, Duran M, Solà M (2002) Global hardness evaluation using simplified models for the hardness kernel. J Phys Chem A 106:4632–4638CrossRefGoogle Scholar
  44. 44.
    Fuentealba P (1995) A local model for the hardness kernel and related reactivity parameters in density functional theory. J Chem Phys 103:6571CrossRefGoogle Scholar
  45. 45.
    Ayers PW, Parr RG (2008) Beyond electronegativity and local hardness: higher-order equalization criteria for determination of a ground-state electron density. J Chem Phys 129:054111CrossRefGoogle Scholar
  46. 46.
    Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128:184108CrossRefGoogle Scholar
  47. 47.
    Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814CrossRefGoogle Scholar
  48. 48.
    Slater JC (1933) The virial and the molecular structure. J Chem Phys 1:687–691CrossRefGoogle Scholar
  49. 49.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  50. 50.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729CrossRefGoogle Scholar
  51. 51.
    Clark T (2013) σ-Holes. WIRES Comput Mol Sci 3:13–20CrossRefGoogle Scholar
  52. 52.
    Tognetti V, Joubert L (2015) Electron density Laplacian and halogen bonds. Theor Chem Acc 134:90CrossRefGoogle Scholar
  53. 53.
    Tognetti V, Morell C, Joubert L (2015) Atomic electronegativities in molecules. Chem Phys Lett 635:111–115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christophe Morell
    • 1
    Email author
  • Vincent Tognetti
    • 2
    Email author
  • Emmanuelle Bignon
    • 1
    • 3
  • Elise Dumont
    • 3
  • Noemi Hernandez-Haro
    • 4
  • Barbara Herrera
    • 5
  • André Grand
    • 4
  • Soledad Gutiérrez-Oliva
    • 5
  • Laurent Joubert
    • 2
  • Alejandro Toro-Labbé
    • 5
  • Henry Chermette
    • 1
  1. 1.Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRSUniversité Claude Bernard Lyon 1VilleurbanneFrance
  2. 2.Normandy University, COBRA UMR 6014 & FR 3038Université de Rouen, INSA Rouen, CNRSMont St Aignan. CedexFrance
  3. 3.Laboratoire de Chimie, UMR 5182CNRS Ecole Normale Supérieure de LyonLyonFrance
  4. 4.CEA Grenoble -INAC/SCIB/LAN (UMR-E n°3 CEA-UJF)CEA-GrenobleGrenoble Cedex 9France
  5. 5.Nucleus Millenium Chemical Processes and Catalysis (CPC), Laboratorio de Quimica Teorica Computacional (QTC), Facultad de QuimicaPontificia Universidad Catolica de ChileSantiagoChile

Personalised recommendations