Advertisement

Theoretical Chemistry Accounts

, 134:146 | Cite as

Photoactivatable platinum(II) compounds: in search of novel anticancer drugs

  • José P. Cerón-Carrasco
  • Denis JacqueminEmail author
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

Photoactivated chemotherapy is a promising clinical alternative to focus the action of a drug in a tumoral region while sparing undamaged tissues. However, the phototherapeutic window is rather narrow (620–850 nm), so that any novel photoactivatable drug needs to be excited within that range. In the present work, we asses the potential performances of several novel photoactivatable platinum-based anticancer drugs by means of calculations. Indeed, a panel of theoretical levels, including molecular dynamics simulations, density functional theory and its time-dependent counterpart, are used to determine drug–DNA adduct structures as well as to compute their optical properties. The reported data provide comprehensive insights into the design of improved platinum(II) drugs able to induce a direct reaction of the metallic center with DNA upon irradiation in the phototherapeutic window.

Keywords

Chemotherapy Metallodrugs Photoactivation DNA Quantum chemistry TD-DFT 

Notes

Acknowledgments

This work was supported by the Fundación Séneca–Agencia de Ciencia y Tecnología de la Región de Murcia under Project 19419/PI/14-1. J.P. C.-C. acknowledges the support provided by the Centro de Alto Rendimiento de la Región de Murcia within its Research Program (CAR 23). D.J. acknowledges the European Research Council (ERC) for financial support in the framework of a Starting Grant (Marches—278845). D.J. acknowledges the LUMOMAT project principally financed by Région des Pays de la Loire. This research used resources of the CINES and the CCIPL in France.

References

  1. 1.
    Kelland L (2007) Nat Rev Cancer 7:573–584CrossRefGoogle Scholar
  2. 2.
    Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407CrossRefGoogle Scholar
  3. 3.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498CrossRefGoogle Scholar
  4. 4.
    McWhinney SR, Goldberg RM, McLeod HL (2009) Mol Cancer Ther 8:10–16CrossRefGoogle Scholar
  5. 5.
    Reedijk J (1999) Chem Rev 99:2499–2510CrossRefGoogle Scholar
  6. 6.
    Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM (2007) Anticancer Agent Med Chem 7:3–18CrossRefGoogle Scholar
  7. 7.
    Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK (2008) Dalton Trans 2008:183–194CrossRefGoogle Scholar
  8. 8.
    Alberto ME, Lucas MF, Pavelka M, Russo N (2008) J Phys Chem B 112:10765–10768CrossRefGoogle Scholar
  9. 9.
    Alberto ME, Lucas MFA, Pavelka M, Russo N (2009) J Phys Chem B 113:14473–14479CrossRefGoogle Scholar
  10. 10.
    Zimmermann T, Chval Z, Burda JV (2009) J Phys Chem B 113:3139–3150CrossRefGoogle Scholar
  11. 11.
    Alberto ME, Butera V, Russo N (2011) Inorg Chem 50:6965–6971CrossRefGoogle Scholar
  12. 12.
    Pérez RP (1998) Eur J Cancer 34:1535–1544CrossRefGoogle Scholar
  13. 13.
    Burda JV, Leszczyński J (2003) Inorg Chem 42:7162–7172CrossRefGoogle Scholar
  14. 14.
    Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196CrossRefGoogle Scholar
  15. 15.
    Fuertes MA, Alonso C, Pérez JM (2003) Chem Rev 103:645–662CrossRefGoogle Scholar
  16. 16.
    Wong E, Giandomenico CM (1999) Chem Rev 99:2351–2466CrossRefGoogle Scholar
  17. 17.
    Schatzschneider U (2010) Eur J Inorg Chem 2010:1451–1467CrossRefGoogle Scholar
  18. 18.
    Farrer NJ, Salassa L, Sadler PJ (2009) Dalton Trans 2009:10690–10701CrossRefGoogle Scholar
  19. 19.
    Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Chem Rev 105:2647–2694CrossRefGoogle Scholar
  20. 20.
    Ziegler DF, Brewer KJ (2009) In: Hadjiliadis N, Sletten E (eds) Metal complexes–DNA interactions. Wiley, London, pp 235–272Google Scholar
  21. 21.
    Armitage B (1998) Chem Rev 98:1171–1200CrossRefGoogle Scholar
  22. 22.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151CrossRefGoogle Scholar
  23. 23.
    Gao J, Liu YG, Liu R, Zingaro R (2008) ChemMedChem 3:954–962CrossRefGoogle Scholar
  24. 24.
    Cerón-Carrasco JP, Cerezo J, Requena A, Zúñiga J, Contreras-García J, Chavan S, Manrubia-Cobo M, Pérez-Sánchez HE (2014) J Mol Model 20:2401–2409CrossRefGoogle Scholar
  25. 25.
    Chantzis A, Very T, Despax S, Issenhuth JT, Boeglin A, Hébraud P, Pfeffer M, Monari A, Assfeld X (2014) J Mol Model 20:2082–2092CrossRefGoogle Scholar
  26. 26.
    Cerón-Carrasco JP, Siard A, Jacquemin D (2013) Dyes Pigm 99:972–978CrossRefGoogle Scholar
  27. 27.
    Gil A, Branchadell V, Bertran J, Oliva A (2009) J Phys Chem B 113:4907–4914CrossRefGoogle Scholar
  28. 28.
    Acosta-Silva C, Branchadell V, Bertran J, Oliva A (2010) J Phys Chem B 114:10217–10227CrossRefGoogle Scholar
  29. 29.
    Cerón-Carrasco JP, Zúñiga J, Requena A, Perpète EA, Michaux C, Jacquemin D (2011) Phys Chem Chem Phys 13:14584–14589CrossRefGoogle Scholar
  30. 30.
    Salassa L, Phillips HIA, Sadler PJ (2009) Phys Chem Chem Phys 11:10311–10316CrossRefGoogle Scholar
  31. 31.
    Wu Y, Bhattacharyya D, King CL, Baskerville-Abraham I, Huh SH, Boysen G, Swenberg JA, Temple B, Campbell SL, Chaney SG (2007) Biochemistry 46:6477–6487CrossRefGoogle Scholar
  32. 32.
    Cerón-Carrasco JP, Jacquemin D, Cauët E (2012) Phys Chem Chem Phys 14:12457–12464CrossRefGoogle Scholar
  33. 33.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  34. 34.
    Scheeff ED, Briggs JM, Howell SB (1999) Mol Pharmacol 56:633–643Google Scholar
  35. 35.
    Yao S, Plastaras JP, Marzilli LG (1994) Inorg Chem 33:6061–6077CrossRefGoogle Scholar
  36. 36.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus T, de Jong WA (2010) Comput Phys Commun 181:1477CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CTGoogle Scholar
  38. 38.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  40. 40.
    Stewart JJP (2007) J Mol Model 13:1173–1213CrossRefGoogle Scholar
  41. 41.
    Casida ME (2009) J Mol Struct (THEOCHEM) 914:3–18CrossRefGoogle Scholar
  42. 42.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  43. 43.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  44. 44.
    Alberto ME, Marino T, Russo N, Sicilia E, Toscano M (2012) Phys Chem Chem Phys 14:14943–14953CrossRefGoogle Scholar
  45. 45.
    Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506CrossRefGoogle Scholar
  46. 46.
    Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) Phys Chem Chem Phys 14:5383–5388CrossRefGoogle Scholar
  47. 47.
    Cauët E, Liévin J (2009) J Phys Chem A 113:9881–9890CrossRefGoogle Scholar
  48. 48.
    Galano A, Alvarez-Idaboy JR (2012) Phys Chem Chem Phys 14:12476–12484CrossRefGoogle Scholar
  49. 49.
    Patel C, Garrec J, Dupont C, Dumont E (2013) Biochemistry 52:425–431CrossRefGoogle Scholar
  50. 50.
    Garrec J, Patel C, Rothlisberger U, Dumont E (2012) J Am Chem Soc 134:2111–2119CrossRefGoogle Scholar
  51. 51.
    Chantzis A, Very T, Monari A, Assfeld X (2012) J Chem Theory Comput 8:1536–1541CrossRefGoogle Scholar
  52. 52.
    Chantzis A, Very T, Daniel C, Monari A, Assfeld X (2013) Chem Phys Lett 578:133–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science DepartmentUniversidad Católica San Antonio de Murcia (UCAM)MurciaSpain
  2. 2.CEISAM UMR CNRS 6230Université de NantesNantes Cedex 3France
  3. 3.Institut Universitaire de FranceParis Cedex 5France

Personalised recommendations