Advertisement

Theoretical Chemistry Accounts

, 134:112 | Cite as

Stability of dioctahedral 2:1 phyllosilicate edge structures based on pyrophyllite models

  • Lasse P. Lavikainen
  • Janne T. Hirvi
  • Seppo Kasa
  • Timothy Schatz
  • Tapani A. Pakkanen
Regular Article

Abstract

Phyllosilicates and related clay minerals are of interest due to a variety of technological applications and impact on natural soils. The important properties of these layered minerals arise from their surface chemistry, and therefore understanding the characteristics of their surfaces is desirable. The common focus has been on the basal surfaces, whereas the edge surfaces are little studied. One of the underlying reasons is that the edge surfaces exhibit various possible geometries making it difficult to assume a certain structure with a confidence. The present paper is dedicated to the stability of the edge structures and introduces the largest quantum chemical study on the subject to date. Pyrophyllite was used as a model species. Edge stabilities were determined as cleavage energies, including edge termination by dissociative sorption of water with variable proton configurations. The results show similar stabilities for various edge structures parallel to the (010), (130), (110) and (100) lattice planes, but the edges cleaved by cutting the fewest bonds are suggested to be the most stable on the basis of free energy estimation. The dominant edge is predicted to appear on the (110) crystal face.

Keywords

Pyrophyllite Phyllosilicate Edge Surface Cleavage Clay 

Notes

Acknowledgments

Financial support provided by Posiva Oy is gratefully acknowledged. The computations were made possible by the use of the Finnish Grid Infrastructure resources.

References

  1. 1.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  2. 2.
    Hassan MS, Villieras F, Gaboriaud F, Razafitianamaharavo A (2006) J Colloid Interface Sci 296:614–623CrossRefGoogle Scholar
  3. 3.
    Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Clays Clay Miner 51:359–371CrossRefGoogle Scholar
  4. 4.
    Tombácz E, Szekeres M (2004) Appl Clay Sci 27:75–94CrossRefGoogle Scholar
  5. 5.
    Churakov SV (2006) J Phys Chem B 110:4135–4146CrossRefGoogle Scholar
  6. 6.
    Churakov SV (2007) Geochim Cosmochim Acta 71:1130–1144CrossRefGoogle Scholar
  7. 7.
    Bourg IC, Sposito G, Bourg ACM (2007) J Colloid Interface Sci 312:297–310CrossRefGoogle Scholar
  8. 8.
    Delhorme M, Labbez C, Caillet C, Thomas F (2010) Langmuir 26:9240–9249CrossRefGoogle Scholar
  9. 9.
    Yan L, Englert AH, Masliyah JH, Xu Z (2011) Langmuir 27:12996–13007CrossRefGoogle Scholar
  10. 10.
    Liu X, Cheng J, Sprik M, Lu X, Wang R (2014) Geochim Cosmochim Acta 140:410–417CrossRefGoogle Scholar
  11. 11.
    Liu X, Lu X, Meijer EJ, Wang R, Zhou H (2012) Geochim Cosmochim Acta 81:56–68CrossRefGoogle Scholar
  12. 12.
    Keren R, Sparks DL (1995) Soil Sci Soc Am J 59:430–435CrossRefGoogle Scholar
  13. 13.
    Martins DMS, Molinari M, Gonçalves MA, Mirão JP, Parker SC (2014) J Phys Chem C 118:27308–27317CrossRefGoogle Scholar
  14. 14.
    Scheidegger AM, Lamble GM, Sparks DL (1996) Environ Sci Technol 30:548–554CrossRefGoogle Scholar
  15. 15.
    Undabeytia T, Morillo E, Maqueda C (1996) Clay Miner 31:485–490CrossRefGoogle Scholar
  16. 16.
    Kremleva A, Martorell B, Kruger S, Rosch N (2012) Phys Chem Chem Phys 14:5815–5823CrossRefGoogle Scholar
  17. 17.
    Strawn DG, Palmer NE, Furnare LJ, Goodell C, Amonette JE, Kukkadapu RK (2004) Clays Clay Miner 52:321–333CrossRefGoogle Scholar
  18. 18.
    Bickmore BR, Bosbach D, Hochella JRMF, Charlet L, Rufe E (2001) Am Miner 86:411–423Google Scholar
  19. 19.
    White NG, Zelazny LW (1988) Clays Clay Miner 36:141–146CrossRefGoogle Scholar
  20. 20.
    Bleam WF, Welhouse GJ, Janowiak MA (1993) Clays Clay Miner 41:305–316CrossRefGoogle Scholar
  21. 21.
    Hartman P, Perdok WG (1955) Acta Cryst 8:49–52CrossRefGoogle Scholar
  22. 22.
    Hartman P, Perdok WG (1955) Acta Cryst 8:521–524CrossRefGoogle Scholar
  23. 23.
    Hartman P, Perdok WG (1955) Acta Cryst 8:525–529CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  26. 26.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  27. 27.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  28. 28.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  29. 29.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  32. 32.
    Voora VK, Al-Saidi W, Jordan KD (2011) J Phys Chem A 115:9695–9703CrossRefGoogle Scholar
  33. 33.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  34. 34.
    Drits VA, Guggenheim S, Zviagina BB, Kogure T (2012) Clays Clay Miner 60:574–587CrossRefGoogle Scholar
  35. 35.
    Lee JH, Guggenheim S (1981) Am Miner 66:350–357Google Scholar
  36. 36.
    Lide DR (ed) (2004) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, pp 6–110Google Scholar
  37. 37.
    Mahadevan TS, Garofalini SH (2008) J Phys Chem C 112:1507–1515CrossRefGoogle Scholar
  38. 38.
    Kirsch H, Wirth J, Tong Y, Wolf M, Saalfrank P, Campen RK (2014) J Phys Chem C 118:13623–13630CrossRefGoogle Scholar
  39. 39.
    Alvim RS, Borges I, Costa DG, Leitão AA (2012) J Phys Chem C 116:738–744CrossRefGoogle Scholar
  40. 40.
    Lide DR (ed) (2004) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, pp 5–18Google Scholar
  41. 41.
    Wulff G (1901) Z Krystallogr 34:499–530Google Scholar
  42. 42.
    Zucker RV, Chatain D, Dahmen U, Serge H, Carter WC (2012) J Mater Sci 47:8290–8302CrossRefGoogle Scholar
  43. 43.
    Kerisit S, Parker SC (2004) J Am Chem Soc 126:10152–10161CrossRefGoogle Scholar
  44. 44.
    Rahaman A, Grassian VH, Margulis CJ (2008) J Phys Chem C 112:2109–2115CrossRefGoogle Scholar
  45. 45.
    Barnard AS, Zapol P (2004) J Chem Phys 121:4276–4283CrossRefGoogle Scholar
  46. 46.
    Barnard AS, Zapol P (2004) Phys Rev B 70:235403CrossRefGoogle Scholar
  47. 47.
    Pérez-Rodríguez JL, del Madrid Sánchez Villar L, Sánchez-Soto PJ (1988) Clay Miner 23:399–410CrossRefGoogle Scholar
  48. 48.
    Bauer A, Velde B, Gaupp R (2000) Clay Miner 35:587–597CrossRefGoogle Scholar
  49. 49.
    Güven N (2001) Clays Clay Miner 49:189–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lasse P. Lavikainen
    • 1
  • Janne T. Hirvi
    • 1
  • Seppo Kasa
    • 2
  • Timothy Schatz
    • 3
  • Tapani A. Pakkanen
    • 1
  1. 1.Department of ChemistryUniversity of Eastern FinlandJoensuuFinland
  2. 2.Posiva OyEurajokiFinland
  3. 3.B+Tech OyHelsinkiFinland

Personalised recommendations