Advertisement

Theoretical Chemistry Accounts

, 134:107 | Cite as

Second-order Møller–Plesset perturbation (MP2) theory at finite temperature: relation with Surján’s density matrix MP2 and its application to linear-scaling divide-and-conquer method

  • Masato KobayashiEmail author
  • Tetsuya Taketsugu
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of P. R. Surjan

Abstract

In 2005, Surján showed two explicit formulas for evaluating the second-order Møller–Plesset perturbation (MP2) energy as a functional of the Hartree–Fock density matrix \(\varvec{D}\) (Chem Phys Lett 406:318, 2005), which are referred to as the \(\Delta E_\text {MP2}[\varvec{D}]\) functionals. In this paper, we present the finite-temperature (FT) MP2 energy functionals of the FT Hartree–Fock density matrix. There are also two formulas for the FT-MP2, namely the conventional and renormalized ones; the latter of which has recently been formulated by Hirata and He (J Chem Phys 138:204112, 2013). We proved that there exists one-to-one correspondence between the formulas of two FT-MP2 and the \(\Delta E_\text {MP2}[\varvec{D}]\) functionals. This fact can explain the different behavior of two \(\Delta E_\text {MP2}[\varvec{D}]\) functionals when an approximate Hartree–Fock density matrix is applied, which was previously investigated by Kobayashi and Nakai (Chem Phys Lett 420:250, 2006). We also applied the FT-MP2 formalisms to the linear-scaling divide-and-conquer method for improving the accuracy with tiny addition of the computational efforts.

Keywords

Fractional occupation number Many-body perturbation theory Laplace-transformed Møller–Plesset perturbation Linear-scaling electronic structure method 

Notes

Acknowledgments

The authors are grateful to Prof. Hiromi Nakai and Dr. Takeshi Yoshikawa (Waseda University) for their valuable comments. Some of the present calculations were performed using the computer facilities at Research Center for Computational Science, Okazaki, and at Research Institute for Information Technology, Kyushu University, Japan. This work was supported in part by JSPS KAKENHI Grant No. 25810011.

References

  1. 1.
    Helgaker T, Jørgensen P, Olsen J (2002) Molecular electronic-structure theory. Wiley, ChichesterGoogle Scholar
  2. 2.
    Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922CrossRefGoogle Scholar
  3. 3.
    Szabados Á, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 122:114104CrossRefGoogle Scholar
  4. 4.
    Surján P, Rolik Z, Szabados Á, Kőhalmi D (2004) Ann Phys 13:223CrossRefGoogle Scholar
  5. 5.
    Kobayashi M, Szabados Á, Nakai H, Surján PR (2010) J Chem Theory Comput 6:2024CrossRefGoogle Scholar
  6. 6.
    Szabados Á, Nagy P (2011) J Phys Chem A 115:523CrossRefGoogle Scholar
  7. 7.
    Surján PR (1999) An introduction to the theory of geminals. In: Surján PR (ed) Correlation and localization. Springer, Berlin, pp 63–88CrossRefGoogle Scholar
  8. 8.
    Jeszenszki P, Nagy PR, Zoboki T, Szabados Á, Surján PR (2014) Int J Quantum Chem 114:1048CrossRefGoogle Scholar
  9. 9.
    Tarumi M, Kobayashi M, Nakai H (2012) J Chem Theory Comput 8:4330CrossRefGoogle Scholar
  10. 10.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  11. 11.
    Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. 12.
    Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, TokyoCrossRefGoogle Scholar
  13. 13.
    Engel E, Dreizler RM (2011) Density functional theory: an advanced course. Springer, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Surján PR (2005) Chem Phys Lett 406:318CrossRefGoogle Scholar
  15. 15.
    Almlöf J (1991) Chem Phys Lett 181:319CrossRefGoogle Scholar
  16. 16.
    Häser M (1993) Theor Chim Acta 87:147CrossRefGoogle Scholar
  17. 17.
    Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660CrossRefGoogle Scholar
  18. 18.
    Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250CrossRefGoogle Scholar
  19. 19.
    Surján PR, Szabados Á (2011) Perturbative approximations to avoid matrix diagonalization. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics: methods and applications. Springer, Dordrecht, pp 83–95CrossRefGoogle Scholar
  20. 20.
    Kobayashi M, Nakai H (2011) Divide-and-conquer approaches to quantum chemistry: theory and implementation. In: Papadopoulos MG, Zalesny R, Mezey PG, Leszczynski J (eds) Linear-scaling techniques in computational chemistry and physics: methods and applications. Springer, Dordrecht, pp 97–127CrossRefGoogle Scholar
  21. 21.
    Kobayashi M, Nakai H (2012) Phys Chem Chem Phys 14:7629CrossRefGoogle Scholar
  22. 22.
    Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003CrossRefGoogle Scholar
  23. 23.
    Yang W (1991) Phys Rev Lett 66:1438CrossRefGoogle Scholar
  24. 24.
    Yang W, Lee TS (1995) J Chem Phys 103:5674CrossRefGoogle Scholar
  25. 25.
    Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106CrossRefGoogle Scholar
  26. 26.
    Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103CrossRefGoogle Scholar
  27. 27.
    Kobayashi M, Nakai H (2008) J Chem Phys 129:044103CrossRefGoogle Scholar
  28. 28.
    Kobayashi M, Nakai H (2009) J Chem Phys 131:114108CrossRefGoogle Scholar
  29. 29.
    Yoshikawa T, Kobayashi M, Nakai H (2013) Int J Quantum Chem 113:218CrossRefGoogle Scholar
  30. 30.
    Bloch C (1965) Diagram expansions in quantum statistical mechanics. In: de Boer J, Uhlenbeck GE (eds) Studies in statistical mechanics, vol 3. North-Holland, Amsterdam, pp 3–211Google Scholar
  31. 31.
    Blaizot JP, Ripka G (1985) Quantum theory of finite systems. The MIT Press, CambridgeGoogle Scholar
  32. 32.
    Hirata S, He X (2013) J Chem Phys 138:204112CrossRefGoogle Scholar
  33. 33.
    Kohn W, Luttinger JM (1960) Phys Rev 118:41CrossRefGoogle Scholar
  34. 34.
    Matsubara T (1955) Prog Theor Phys 14:351CrossRefGoogle Scholar
  35. 35.
    Thouless DJ (1957) Phys Rev 107:1162CrossRefGoogle Scholar
  36. 36.
    Cremer D (2011) WIREs Comput Mol Sci 1:509CrossRefGoogle Scholar
  37. 37.
    Lipparini E (2008) Modern many-particle physics, 2nd edn. World Scientific, SingaporeCrossRefGoogle Scholar
  38. 38.
    Thouless DJ (1972) The quantum mechanics of many-body systems, 2nd edn. Academic Press, New YorkGoogle Scholar
  39. 39.
    Cohen AJ, Mori-Sánchez P, Yang W (2009) J Chem Theory Comput 5:786CrossRefGoogle Scholar
  40. 40.
    Mattuck RD (1976) A guide to Feynman diagrams in the many-body problem. McGraw-Hill, New YorkGoogle Scholar
  41. 41.
    Yoshikawa T, Kobayashi M, Nakai H (2011) Theor Chem Acc 130:411CrossRefGoogle Scholar
  42. 42.
    Yoshikawa T, Nakai H (2015) Theor Chem Acc 134:53CrossRefGoogle Scholar
  43. 43.
    Mezey PG (1995) J Math Chem 18:141CrossRefGoogle Scholar
  44. 44.
    Szekeres Z, Mezey PG, Surján PR (2006) Chem Phys Lett 424:420CrossRefGoogle Scholar
  45. 45.
    Nakai H (2002) Chem Phys Lett 363:73CrossRefGoogle Scholar
  46. 46.
    Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227CrossRefGoogle Scholar
  47. 47.
    Kobayashi M, Nakai H (2013) J Chem Phys 138:044102CrossRefGoogle Scholar
  48. 48.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  49. 49.
    Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: gamess a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189CrossRefGoogle Scholar
  50. 50.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  51. 51.
    Sidje RB (1998) ACM Trans Math Software 24:130CrossRefGoogle Scholar
  52. 52.
    Akama T, Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2706CrossRefGoogle Scholar
  53. 53.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan
  2. 2.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto UniversityKyotoJapan

Personalised recommendations