Advertisement

Allylation of active methylene compounds with cyclic Baylis–Hillman alcohols: a DFT study

  • Karim Harrath
  • Khaled Essalah
  • Christophe Morell
  • Henry Chermette
  • Salima Boughdiri
Regular Article

Abstract

Allylation reaction of active methylene compounds with cyclic Baylis–Hillman (BH) alcohol catalyzed by 4-dimethyamino-pyridine (DMAP) has been investigated by means of density functional theory with B3LYP/6-311++G(d,p). The first step on the chemical path is considered as an acid–base reaction. It is then followed by allylation of active methylene compound with cyclic BH alcohol. Calculated gas-phase pKa values illustrate that active methylene compounds have higher acidity than the considered cyclic BH alcohol. The DMAP catalytic activity may be interpreted as a proton transfer bridge between the active methylene compounds and the cyclic BH alcohol. Two alternative competing reactivity sites are present. Regioselectivity has been carried out on the base of natural atomic charge, Fukui index. The computations help rationalizing the fact that the direct allylation is the favored reaction and leads to the end-product.

Keywords

DFT calculation Gas-phase pKa Theoretical mechanism Klopman–Salem Orbital control Charge control Fukui function Transition state 

Notes

Acknowledgments

Franck deProft is acknowledged for helpful discussions. HC acknowledges the GENCI/CINES for HPC resources/computer time (Project cpt2130).

References

  1. 1.
    Basavaiah D, Veeraraghavaiah G (2012) The Baylis–Hillman reaction: a novel concept for creativity in chemistry. Chem Soc Rev 41:68CrossRefGoogle Scholar
  2. 2.
    Basavaiah D, Jaganmohan Rao A, Satyanarayana T (2003) Recent advances in the Baylis–Hillman reaction and applications. Chem Rev 103:811–892CrossRefGoogle Scholar
  3. 3.
    Ozawa F, Okamoto H, Kawagishi S, Yamamoto S, Minami T, Yoshifuji M (2002) (Pi-allyl) palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): highly active catalysts for direct conversion of allylic alcohols. J Am Chem Soc 124:10968–10969CrossRefGoogle Scholar
  4. 4.
    Manabe K, Kobayashi S (2003) Palladium-catalyzed, carboxylic acid-assisted allylic substitution of carbon nucleophiles with allyl alcohols as allylating agents in water. Org Lett 15:3241–3244CrossRefGoogle Scholar
  5. 5.
    Kayaki Y, Koda T, Ikariya T (2004) Halide-free dehydrative allylation using allylic alcohols promoted by a palladium-triphenyl phosphite catalyst. J Org Chem 69:2595–2597CrossRefGoogle Scholar
  6. 6.
    Patil NT, Yamamoto Y (2004) Direct allylic substitution of allyl alcohols by carbon pronucleophiles in the presence of a palladium/carboxylic acid catalyst under neat conditions. Tetrahedron Lett 45:3101–3103CrossRefGoogle Scholar
  7. 7.
    Bisaro F, Pretat G, Vitale M, Poli G (2002) Alkylation of active methylenes via benzhydryl cations. Synlett 2002:1823–1826CrossRefGoogle Scholar
  8. 8.
    Yasuda M, Somyo T, Baba A (2006) Direct carbon–carbon bond formation from alcohols and active methylenes, alkoxyketones, or indoles catalyzed by indium trichloride. Angew Chem Int Ed 45:793–796CrossRefGoogle Scholar
  9. 9.
    Jana U, Biswas S, Maiti S (2007) A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Lett 48:4065–4069CrossRefGoogle Scholar
  10. 10.
    Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodriguez F (2006) Brønsted acid-catalyzed nucleophilic substitution of alcohols. Adv Synth Catal 348:1841–1854CrossRefGoogle Scholar
  11. 11.
    Rao W, Tay AHL, Goh PJ, Choy JML, Ke JK, Chan PWH (2008) Iodine-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols at room temperature. Tetrahedron Lett 49:5112–5115Google Scholar
  12. 12.
    Motokura K, Fujita N, Mori K, Mizugaki T, Ebitani K, Kaneda K (2006) Environmentally benign additions of various 1,3-dicarbonyl compounds to alkenes and alcohols in the presence of solid acid catalysts have been described. Angew Chem Int Ed 45:2605–2609CrossRefGoogle Scholar
  13. 13.
    Noji M, Konno Y, Ishii K (2007) Metal triflate-catalyzed cationic benzylation and allylation of 1,3-dicarbonyl compounds. J Org Chem 72:5161–5167CrossRefGoogle Scholar
  14. 14.
    Shen M-G, Cai C, Yi WB (2009) Yb [N(SO2C8F17)2]3-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols in a fluorous biphase system. J Fluorine Chem 130:595–599Google Scholar
  15. 15.
    Mhasni O, Rezgui F (2010) The first DMAP-mediated palladium-free Tsuji–Trost-type reaction of cyclic and acyclic Baylis–Hillman alcohols with active methylene compounds. Tetrahedron Lett 51:586–587CrossRefGoogle Scholar
  16. 16.
    Salehi P, Iranpoor N, Kargar F (1998) Behbahani, selective and efficient alcoholyses of allylic, secondary- and tertiary benzylic alcohols in the presence of iron (III). Tetrahedron 54:943–948CrossRefGoogle Scholar
  17. 17.
    Yadav JS, SubbaReddy BV, Pandurangum T, RaghavendraRao KV, Praneeth K, NarayanaKumar GGKS, Madavi C, Kunwar AC (2008) Heteropoly acid-catalyzed highly efficient alkylation of 1,3-dicarbonyl compounds with benzylic and propargylic alcohols. Tetrahedron Lett 49:4296–4301CrossRefGoogle Scholar
  18. 18.
    Sanderson J, Bayse CA (2008) The Lewis acidity of bismuth(III) halides: a DFT analysis. Tetrahedron Lett 64:7685–7689CrossRefGoogle Scholar
  19. 19.
    Rueping M, Nachtsheim BJ, Kuenkel A (2007) Efficient metal-catalyzed direct benzylation and allylic alkylation of 2,4-pentanediones. Org Lett 9:825–828CrossRefGoogle Scholar
  20. 20.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  21. 21.
    Pearson RG (1966) Acids and bases. Science 151:172–177CrossRefGoogle Scholar
  22. 22.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  23. 23.
    Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, OxfordCrossRefGoogle Scholar
  24. 24.
    Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  25. 25.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 21:1922–1924CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Local softness and chemical reactivity in molecules CO, SCN and H2CO. J Mol Struct (Theochem) 163:305–313CrossRefGoogle Scholar
  27. 27.
    Marakchi K, Kabbaj OK, Komiha N, Chraibi ML (2001) Etude théorique des réactions de cycloaddition dipolaire-1,3 de la diphénylnitrilimine sur des dipolarophiles hautement fluorés. J Fluorine Chem 109:163–171CrossRefGoogle Scholar
  28. 28.
    Ramos-Morales FR, Durand-Niconoff S, Correa-Basurto J, Meléndez Bustamante FJ, Cruz-Sánchez JS (2008) Theoretical study of reactivity based on the hard–soft/acid–base (HSAB) in isatoic anhydride and some derivatives. J Mex Chem Soc 52:241–244Google Scholar
  29. 29.
    Flores-Holguín N, Aguilar-Elguézabal A, Rodríguez-Valdez LM, Glossman Mitnik D (2008) Theoretical study of chemical reactivity of main species in alpha-pinene isomerization reaction. J Mol Struct (Theochem) 854:81–88CrossRefGoogle Scholar
  30. 30.
    Benchouk W, Mekelleche SM (2008) Theoretical study of the mechanism and regioselectivity of the 1, 3-dipolar cycloaddition of diazomethane with methyl acrylate using theoretical approaches. J Mol Struct (Theochem) 862:1–6CrossRefGoogle Scholar
  31. 31.
    Benson MT, Moser ML, Peterman DR, Dinescu A (2008) Determination of pKa for dithiophosphinic acids using density functional theory. J Mol Struct (Theochem) 867:71–77CrossRefGoogle Scholar
  32. 32.
    Mineva T, Russo N (2010) Atomic Fukui indices and orbital hardnesses of adenine, thymine, uracil, guanine and cytosine from density functional computations. J Mol Struct (Theochem) 943:71–76CrossRefGoogle Scholar
  33. 33.
    Chamorro E, Duque-Noreña M, Pérez P (2009) A comparison between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct (Theochem) 896:73–79CrossRefGoogle Scholar
  34. 34.
    De Vleeschouwer F, De Proft F, Geerlings P (2010) Conceptual density functional theory based intrinsic radical stabilities: application to substituted silylenes and p-benzynes. J Mol Struct (Theochem) 943:94–102CrossRefGoogle Scholar
  35. 35.
    Nazari F, Zali FR (2007) Density functional study of the relative reactivity of the carbonyl group in substituted cyclohexanone. J Mol Struct (Theochem) 817:11–18CrossRefGoogle Scholar
  36. 36.
    Politzer P, Murray JS, Macaveiu L (2010) The principle of maximum hardness and structural effects of nonbonded interactions in chloronitromethanes. J Mol Struct (Theochem) 943:53–58Google Scholar
  37. 37.
    Pérez P, Chamorro E (2010) Global and local reactivity of N-heterocyclic carbenes with boron and phosphorus atoms: an analysis based on spin polarized density functional framework. J Mol Struct (Theochem) 943:110–114CrossRefGoogle Scholar
  38. 38.
    Fuentealba P, David J, Guerra D (2010) Density functional based reactivity parameters: thermodynamic or kinetic concepts? J Mol Struct (Theochem) 943:127–137CrossRefGoogle Scholar
  39. 39.
    Martínez J (2009) Chemical, local reactivity descriptors from degenerate frontier molecular orbitals. Phys Lett 478:310–322CrossRefGoogle Scholar
  40. 40.
    Labet V, Morell C, Douki T, Cadet J, Eriksson LA, Grand A (2010) Hydrolytic deamination of 5, 6-dihydrocytosine in a protic medium: a theoretical study. J Phys Chem A 114:1826–1834CrossRefGoogle Scholar
  41. 41.
    Correa J, Herrera B, Toro-Labbé A (2007) Characterization of the reactive conformations of protonated histamine through the reaction force analysis and the dual descriptor of chemical reactivity. J Mol Struct (Theochem) 817:111–118CrossRefGoogle Scholar
  42. 42.
    Moncada JL, Toro-Labbé A (2006) A theoretical study of conducting oligomeric systems: the conceptual DFT perspective. Chem Phys Lett 429:161–165CrossRefGoogle Scholar
  43. 43.
    Hocquet A, Toro-Labbé A, Chermette H (2004) Intramolecular Interactions along the reaction path of keto-enol tautomerism: fukui functions as local softnesses and charges as local hardnesses. J Mol Struct (Theochem) 686:213–218CrossRefGoogle Scholar
  44. 44.
    Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138CrossRefGoogle Scholar
  45. 45.
    Roy DR, Parthasarathi R, Maiti B, Subramanian V, Chattaraj PK (2005) Electrophilicity as a possible descriptor for toxicity prediction. Bioorganic Med Chem 13:3405–3412CrossRefGoogle Scholar
  46. 46.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  47. 47.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  48. 48.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  49. 49.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wavefunctions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25: supplementary functions for gaussian basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  51. 51.
    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  52. 52.
    Charif IE, Mekelleche SM, Villemin D, Mora-Diez N (2007) Correlation of aqueous pK a values of carbon acids with theoretical descriptors: a DFT study. J Mol Struct (Theochem) 818:1–6CrossRefGoogle Scholar
  53. 53.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154CrossRefGoogle Scholar
  54. 54.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873CrossRefGoogle Scholar
  55. 55.
    Chermette H (1998) Density functional theory a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 178–180:699–721CrossRefGoogle Scholar
  56. 56.
    Ciofini I, Adamo C, Chermette H (2005) Self-interaction error in density functional theory: a mean-field correction for molecules and large systems. Chem Phys 309:67–76CrossRefGoogle Scholar
  57. 57.
    Chermette H, Boulet P, Portmann S (2002) In: Sen KD (ed) Fukui functions and local softness, reviews in modern quantum chemistry: a celebration of the contributions of Robert G. Parr, 2002; recent advances in density functional methods, part V. World Scientific, Singapore, pp 992–1012Google Scholar
  58. 58.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  59. 59.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  60. 60.
    Klopman G (1986) Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc 90:223–234CrossRefGoogle Scholar
  61. 61.
    Chattaraj PK (2001) Chemical reactivity and selectivity: local HSAB principle versus frontier orbital theory. J Phys Chem A 105:511–513CrossRefGoogle Scholar
  62. 62.
    Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karim Harrath
    • 1
  • Khaled Essalah
    • 2
  • Christophe Morell
    • 3
  • Henry Chermette
    • 3
  • Salima Boughdiri
    • 1
  1. 1.Research Unity of Physical Chemistry Condensed Materials, Department of Chemistry, Faculty of SciencesUniversity Tunis El ManarTunisTunisia
  2. 2.Research Unity of Molecular Physico-ChemistryIPESTTunisTunisia
  3. 3.University Lyon 1(UCBL) and CNRS UMR 5280 Institut Sciences AnalytiquesUniversité de LyonVilleurbanne CedexFrance

Personalised recommendations