Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold

Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

The structure and energetic properties of self-assembled monolayers (SAMs) of alkanethiol derivatives (simple alkanethiols, mercaptoalkanoic acids and aminoalkanethiols with different chain length) adsorbed on the metallic Au(111) surface are investigated through periodic DFT calculations. To sort out the effect of van der Waals (vdW) interactions on the DFT calculations, the results of the standard GGA–PBE functional are compared with those obtained with approaches including the vdW interactions such as those incorporating the Grimme’s (GGA–PBE-D2) and the Tkatchenko–Scheffler’s (GGA–PBE-TS) schemes, as well as with the optB86b-vdW density functional. The most significant difference between the two sets of results appears for the adsorption energies per thiol molecules: The standard functional predicts energy values 30–40 % lower than those obtained when the van der Waals interactions are taken into account. This is certainly due to a better description of the lateral interactions between the chains of the thiols when including the van der Waals effects. Differences are also found between the adsorption energies predicted by density functionals taking into account the vdW corrections, with values increasing in the order GGA–PBE-D2 < GGA–PBE-TS < optB86b-vdW. Furthermore, the functionals considering dispersion interactions favor much more tilted orientations of the SAMs over the surface with respect to those found using the standard GGA functional (the SAMs’ tilt angles increase from 17°–24° to 37°–46°), being the former in closer agreement with available experimental data. In contrast, the SAMs’ precession angle and monolayer thickness are less affected by the type of DFT exchange–correlation functional employed. In the case of low surface coverage, the chains of the thiols adopt more tilted configurations and tend to lay side-down onto the surface.

Keywords

Gold (111) surface Thiols Periodic density functional theory van der Waals effects 

Notes

Acknowledgments

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and to FEDER for financial support to REQUIMTE (projects Pest-C/EQB/LA0006/2013 and NORTE-07-0124-FEDER-000067-NANOCHEMISTRY) and to CICECO (project Pest-C/CTM/LA0011/2013) and for Programa Investigador FCT. This work is supported also by FCT through project PTDC/QUI–QUI/117439/2010 (FCOMP-01-0124-FEDER-020977) co-financed by Programa COMPETE. JLCF acknowledges FCT for the grant SFRH/BPD/64566/2009 co-financed by the Programa Operacional Potencial Humano (POPH)/Fundo Social Europeu (FSE); Quadro de Referência Estratégico Nacional 20092013 do Governo da República Portuguesa.

References

  1. 1.
    Domínguez CSH, Quintana C, Vicente J, Hernández P, Hernández L (2008) Talanta 74:1014–1019CrossRefGoogle Scholar
  2. 2.
    Dong X-D, Lu J, Cha C (1995) Bioelectrochem Bioenerg 36:73–76CrossRefGoogle Scholar
  3. 3.
    Guo C, Boullanger P, Jiang L, Liu T (2008) Colloid Surf B 62:146–150CrossRefGoogle Scholar
  4. 4.
    Kondo M, Nakamura Y, Fujii K, Nagata M, Suemori Y, Dewa T, Iida K, Gardiner AT, Cogdell RJ, Nango M (2007) Biomacromolecules 8:2457–2463CrossRefGoogle Scholar
  5. 5.
    Crivillers N, Mas-Torrent M, Vidal-Gancedo J, Veciana J, Rovira C (2008) J Am Chem Soc 130:5499–5506CrossRefGoogle Scholar
  6. 6.
    Pattanaik G, Shao W, Swami N, Zangari G (2009) Langmuir 25:5031–5038CrossRefGoogle Scholar
  7. 7.
    Li F, Tang L, Zhou W, Guo Q (2009) J Phys Chem C 113:17899–17903CrossRefGoogle Scholar
  8. 8.
    Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen C-C, Benderskii AV, Auner GW (2008) Langmuir 24:4097–4106CrossRefGoogle Scholar
  9. 9.
    Jacobsen V, Zhu T, Knoll W, Kreiter M (2005) Eur J Inorg Chem 2005:3683–3690CrossRefGoogle Scholar
  10. 10.
    Campiña JM, Martins A, Silva F (2009) Electrochem Acta 55:90–103CrossRefGoogle Scholar
  11. 11.
    Lim I-IS, Ip W, Crew E, Njoki PN, Mott D, Zhong C-J, Pan Y, Zhou S (2007) Langmuir 23:826–833CrossRefGoogle Scholar
  12. 12.
    Taylor AD, Ladd J, Etheridge S, Deeds J, Hall S, Jiang S (2008) Sens Actuator B 130:120–128CrossRefGoogle Scholar
  13. 13.
    Waring C, Bagot PAJ, Räisänen MT, Costen ML, McKendrick KG (2009) J Phys Chem A 113:4320–4329CrossRefGoogle Scholar
  14. 14.
    Dubois C, Stellacci F (2008) J Phys Chem C 112:7431–7435CrossRefGoogle Scholar
  15. 15.
    Dubois LH, Zegarski BR, Nuzzo RG (1993) J Chem Phys 98:678–688CrossRefGoogle Scholar
  16. 16.
    Laiho T, Leiro JA (2008) Surf Interface Anal 40:51–59CrossRefGoogle Scholar
  17. 17.
    Müller-Meskamp L, Karthäuser S, Waser R, Homberger M, Simon U (2008) Langmuir 24:4577–4580CrossRefGoogle Scholar
  18. 18.
    Oh SY, Chung CM, Kim DH, Lee SG (2008) Colloid Surf A 313–314:600–603CrossRefGoogle Scholar
  19. 19.
    Okabayashi N, Konda Y, Komeda T (2008) Phys Rev Lett 100:217801CrossRefGoogle Scholar
  20. 20.
    Béthencourt MI, Srisombat L-O, Chinwangso P, Lee TR (2009) Langmuir 25:1265–1271CrossRefGoogle Scholar
  21. 21.
    Sharma M, Komiyama M, Engstrom JR (2008) Langmuir 24:9937–9940CrossRefGoogle Scholar
  22. 22.
    Silien C, Buck M, Goretzki G, Lahaye D, Champness NR, Weidner T, Zharnikov M (2009) Langmuir 25:959–967CrossRefGoogle Scholar
  23. 23.
    Staub R, Toerker M, Fritz T, Schmitz-Hübsch T, Sellam F, Leo K (2000) Surf Sci 445:368–379CrossRefGoogle Scholar
  24. 24.
    Ge Y, Weidner T, Ahn H, Whitten JE, Zharnikov M (2009) J Phys Chem C 113:4575–4583CrossRefGoogle Scholar
  25. 25.
    Subramanian S, Sampath S (2007) Anal Bioanal Chem 388:135–145CrossRefGoogle Scholar
  26. 26.
    Lamb BM, Barrett DG, Westcott NP, Yousaf MN (2008) Langmuir 24:8885–8889CrossRefGoogle Scholar
  27. 27.
    Pace G, Petitjean A, Lalloz-Vogel M-N, Harrowfield J, Lehn J-M, Samorì P (2008) Angew Chem Int Ed 47:2484–2488CrossRefGoogle Scholar
  28. 28.
    Phong PH, Tomono H, Nishi N, Yamamoto M, Kakiuchi T (2008) Electrochim Acta 53:4900–4906CrossRefGoogle Scholar
  29. 29.
    Hayashi T, Wakamatsu K, Ito E, Hara M (2009) J Phys Chem C 113:18795–18799CrossRefGoogle Scholar
  30. 30.
    Srisombat L-O, Zhang S, Lee TR (2010) Langmuir 26:41–46CrossRefGoogle Scholar
  31. 31.
    Nadler R, Sánchez-de-Armas R, Sanz JF (2011) Comput Theoretical Chem 975:116–121CrossRefGoogle Scholar
  32. 32.
    Hattori S, Kano S, Azuma Y, Majima Y (2010) J Phys Chem C 114:8120–8125CrossRefGoogle Scholar
  33. 33.
    Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A, Floreano L, Scandolo S, Morgante A, Klein ML, Scoles G (2008) Science 321:943–946CrossRefGoogle Scholar
  34. 34.
    Tielens F, Santos E (2010) J Phys Chem C 114:9444–9452CrossRefGoogle Scholar
  35. 35.
    Kankate L, Turchanin A, Gölzhäuser A (2009) Langmuir 25:10435–10438CrossRefGoogle Scholar
  36. 36.
    Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) J Am Chem Soc 115:9389–9401CrossRefGoogle Scholar
  37. 37.
    Cortés E, Rubert AA, Benitez G, Carro P, Vela ME, Salvarezza RC (2009) Langmuir 25:5661–5666CrossRefGoogle Scholar
  38. 38.
    Desikan R, Armel S, Meyer HM III, Thundat T (2007) Nanotechnology 18:424028CrossRefGoogle Scholar
  39. 39.
    Torres E, Blumenau AT, Biedermann PU (2011) Chem Phys Chem 12:999–1009Google Scholar
  40. 40.
    Fenter P, Eberhardt A, Liang KS, Eisenberger P (1997) J Chem Phys 106:1600–1608CrossRefGoogle Scholar
  41. 41.
    Fenter P, Eisenberger P, Liang KS (1993) Phys Rev Lett 70:2447–2450CrossRefGoogle Scholar
  42. 42.
    Li T-W, Chao I, Tao Y-T (1998) J Phys Chem B 102:2935–2946CrossRefGoogle Scholar
  43. 43.
    Sung I-H, Kim D-E (2004) Tribol Lett 17:835–844CrossRefGoogle Scholar
  44. 44.
    Tsai M-Y, Lin J-C (2001) J Colloid Interface Sci 238:259–266CrossRefGoogle Scholar
  45. 45.
    Woodward JT, Walker ML, Meuse CW, Vanderah DJ, Poirier GE, Plant AL (2000) Langmuir 16:5347–5353CrossRefGoogle Scholar
  46. 46.
    Noh J, Hara M (2011) RIKEN Rev: focused on nanotechnology in RIKEN II 38:49–51Google Scholar
  47. 47.
    Terrill RH, Tanzer TA, Bohn PW (1998) Langmuir 14:845–854CrossRefGoogle Scholar
  48. 48.
    Kautz NA, Kandel SA (2009) J Phys Chem C 113:19286–19291CrossRefGoogle Scholar
  49. 49.
    Kautz NA, Kandel SA (2008) J Am Chem Soc 130:6908–6909CrossRefGoogle Scholar
  50. 50.
    Torres E, Biedermann PU, Blumenau AT (2009) Int J Quantum Chem 109:3466–3472CrossRefGoogle Scholar
  51. 51.
    Wang J-G, Selloni A (2009) J Phys Chem C 113:8895–8900CrossRefGoogle Scholar
  52. 52.
    Maksymovych P, Sorescu DC, Yates JT (2006) Phys Rev Lett 97:146103 (1–4)CrossRefGoogle Scholar
  53. 53.
    Rosu DM, Jones JC, Hsu JWP, Kavanagh KL, Tsankov D, Schade U, Esser N, Hinrichs K (2009) Langmuir 25:919–923CrossRefGoogle Scholar
  54. 54.
    Mendoza SM, Arfaoui I, Zanarini S, Paolucci F, Rudolf P (2007) Langmuir 23:582–588CrossRefGoogle Scholar
  55. 55.
    Chuang W-H, Lin J-C (2007) J Biomed Mater Res A 82:820–830CrossRefGoogle Scholar
  56. 56.
    Iqbal P, Critchley K, Attwood D, Tunnicliffe D, Evans SD, Preece JA (2008) Langmuir 24:13969–13976CrossRefGoogle Scholar
  57. 57.
    Lee S-H, Lin W-C, Kuo C-H, Karakachian M, Lin Y-C, Yu B-Y, Shyue J-J (2010) J Phys Chem C 114:10512–10519CrossRefGoogle Scholar
  58. 58.
    Fadda AA, Abdel-Latif E, El-Mekawy RE (2009) Eur J Med Chem 44:1250–1256CrossRefGoogle Scholar
  59. 59.
    Ge Y, Whitten JE (2008) J Phys Chem C 112:1174–1182CrossRefGoogle Scholar
  60. 60.
    Sändig N, Biscarini F, Zerbetto F (2008) J Phys Chem C 112:19516–19520CrossRefGoogle Scholar
  61. 61.
    Harpham MR, Süzer O, Ma C-Q, Bäuerle P, Goodson T III (2009) J Am Chem Soc 131:973–979CrossRefGoogle Scholar
  62. 62.
    Tang ML, Mannsfeld SCB, Sun Y-S, Becerril HA, Bao Z (2009) J Am Chem Soc 131:882–883CrossRefGoogle Scholar
  63. 63.
    Nogues C, Lang P, Desbat B, Buffeteau T, Leiserowitz L (2008) Langmuir 24:8458–8464CrossRefGoogle Scholar
  64. 64.
    Duffy DM, Harding JH (2005) Langmuir 21:3850–3857CrossRefGoogle Scholar
  65. 65.
    Alkis S, Jiang P, Wang L-L, Roitberg AE, Cheng H-P, Krause JL (2007) J Phys Chem C 111:14743–14752CrossRefGoogle Scholar
  66. 66.
    Bhatia R, Garrison BJ (1997) Langmuir 13:765–769CrossRefGoogle Scholar
  67. 67.
    Bhatia R, Garrison BJ (1997) Langmuir 13:4038–4043CrossRefGoogle Scholar
  68. 68.
    Dirama TE, Johnson JA (2007) Langmuir 23:12208–12216CrossRefGoogle Scholar
  69. 69.
    Ghorai PK, Glotzer SC (2007) J Phys Chem C 111:15857–15862CrossRefGoogle Scholar
  70. 70.
    Mar W, Klein ML (1994) Langmuir 10:188–196CrossRefGoogle Scholar
  71. 71.
    Jia J, Huang YD, Long J, He JM, Zhang HX (2009) App Surf Sci 255:6451–6459CrossRefGoogle Scholar
  72. 72.
    Carro P, Creus AH, Muñoz A, Salvarezza RC (2010) Langmuir 26:9589–9595CrossRefGoogle Scholar
  73. 73.
    Lee H-H, Ružele Ž, Malysheva L, Onipko A, Gutés A, Björefors F, Valiokas R, Liedberg B (2009) Langmuir 25:13959–13971CrossRefGoogle Scholar
  74. 74.
    Grönbeck H, Häkkinen H, Whetten RL (2008) J Phys Chem C 112:15940–15942CrossRefGoogle Scholar
  75. 75.
    Grönbeck H (2010) J Phys Chem C 114:15973–15978CrossRefGoogle Scholar
  76. 76.
    Leng J-C, Lin L-L, Song X-N, Li Z-L, Wang C-K (2009) J Phys Chem C 113:18353–18357CrossRefGoogle Scholar
  77. 77.
    Majumder C (2008) Langmuir 24:10838–10842CrossRefGoogle Scholar
  78. 78.
    Fletcher MC, Vivoni A, Moore MM, Lui J, Caldwell J, Prokes SM, Glembocki O, Hosten CM (2008) Surf Sci 602:1614–1621CrossRefGoogle Scholar
  79. 79.
    Rajaraman G, Caneschi A, Gatteschi D, Totti F (2010) J Mater Chem 20:10747–10754CrossRefGoogle Scholar
  80. 80.
    Alexiadis O, Daoulas KC, Mavrantzas VG (2008) J Phys Chem B 112:1198–1211CrossRefGoogle Scholar
  81. 81.
    Szefczyk B, Franco R, Gomes JANF, Cordeiro MNDS (2010) J Mol Struct: Theochem 946:83–87CrossRefGoogle Scholar
  82. 82.
    Campiña JM, Martins A, Silva F (2007) J Phys Chem C 111:5351–5362CrossRefGoogle Scholar
  83. 83.
    Battaglini N, Repain V, Lang P, Horowitz G, Rousset S (2008) Langmuir 24:2042–2050CrossRefGoogle Scholar
  84. 84.
    Epple M, Bittner AM, Kuhnke K, Kern K, Zheng W-Q, Tadjeddine A (2002) Langmuir 18:773–784CrossRefGoogle Scholar
  85. 85.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  86. 86.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  87. 87.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  88. 88.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 67:3865–3868CrossRefGoogle Scholar
  89. 89.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  90. 90.
    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005CrossRefGoogle Scholar
  91. 91.
    Klimeš J, Bowler DR, Michaelides A (2010) J Phys: Cond Matt 22:022201Google Scholar
  92. 92.
    Andersson MP (2013) J Theor Chem 2013:327839CrossRefGoogle Scholar
  93. 93.
    Prates Ramalho JP, Gomes JRB, Illas F (2013) RSC Adv 3:13085–13100CrossRefGoogle Scholar
  94. 94.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  95. 95.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  96. 96.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2011) Chem Comm 47:8403–8405CrossRefGoogle Scholar
  97. 97.
    Fajín JLC, Gomes JRB, Cordeiro MNDS (2013) Langmuir 29:8856–8864CrossRefGoogle Scholar
  98. 98.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2007) J Phys Chem C 111:17311–17321CrossRefGoogle Scholar
  99. 99.
    Rai B, Sathish P, Malhotra CP, Pradip, Ayappa KG (2004) Langmuir 20:3138–3144CrossRefGoogle Scholar
  100. 100.
    Fertitta E, Voloshina E, Paulus B (2014) J Comput Chem 35:204–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.CICECO, Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations