Revisiting the mechanism and the influence of the excitation wavelength on the surface-enhanced Raman scattering of the pyridine–Ag20 system

  • Nicolás Ramos-Berdullas
  • Diego López-Carballeira
  • Marcos Mandado
  • Ignacio Pérez-Juste
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

This work presents the application of a recent decomposition scheme of the Raman tensor into molecule and surface contributions to the study of the static and resonance Raman spectra of pyridine adsorbed on a Ag20 cluster, a typical probe for the theoretical study of surface-enhanced Raman scattering (SERS) spectra. The results obtained show that both the chemical and electromagnetic enhancements observed are related to changes on the polarizability and polarizability derivatives of the pyridine molecule. No significant contributions from the surface and from vibrational intermolecular coupling are found. Since similar incident lights produce remarkably different SERS spectra, the effect of excitation wavelength on the spectra of the PY–Ag20 complexes is also scrutinized. From the computed Raman excitation profiles and from the analysis of the electron density changes upon electronic transitions, it is established that the differences found can be related to the amount of electron density transferred from the silver cluster to pyridine upon excitation and to the distance between both units. These findings suggest that a proper knowledge of the effect of the excitation wavelength is necessary for obtaining a reliable theoretical interpretation of surface-enhanced Raman spectra.

Keywords

Surface-enhanced Raman spectroscopy Density functional theory Adsorption Pyridine–silver complexes 

References

  1. 1.
    Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  2. 2.
    Van Duyne RP (1974) Chemical and biochemical applications of lasers, Chapter 5, vol 4. Academic Press, New YorkGoogle Scholar
  3. 3.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  4. 4.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  5. 5.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  6. 6.
    Nie SM, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  7. 7.
    Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects, Whole, vol Book. Elsevier, BostonGoogle Scholar
  8. 8.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  9. 9.
    Jensen L, Aikens CM, Schatz GC (2008) Chem Soc Rev 37:1061–1073CrossRefGoogle Scholar
  10. 10.
    Lombardi JR, Birke RL (2008) J Phys Chem C 112:5605–5617CrossRefGoogle Scholar
  11. 11.
    Lombardi JR, Birke RL (2009) Accounts Chem Res 42:734–742CrossRefGoogle Scholar
  12. 12.
    Jensen L, Autschbach J, Schatz GC (2005) J Chem Phys 122:224115CrossRefGoogle Scholar
  13. 13.
    Jensen L, Zhao LL, Autschbach J, Schatz GC (2005) J Chem Phys 123:174110CrossRefGoogle Scholar
  14. 14.
    Ramos-Berdullas N, López-Carballeira D, Perez-Juste I, Mandado M (2015) SubmittedGoogle Scholar
  15. 15.
    Golab JT, Sprague JR, Carron KT, Schatz GC, Vanduyne RP (1988) J Chem Phys 88:7942–7951CrossRefGoogle Scholar
  16. 16.
    Li WH, Li XY, Yu NT (1999) Chem Phys Lett 305:303–310CrossRefGoogle Scholar
  17. 17.
    Corni S, Tomasi J (2001) Chem Phys Lett 342:135–140CrossRefGoogle Scholar
  18. 18.
    Vivoni A, Birke RL, Foucault R, Lombardi JR (2003) J Phys Chem B 107:5547–5557CrossRefGoogle Scholar
  19. 19.
    Zhao LL, Jensen L, Schatz GC (2006) J Am Chem Soc 128:2911–2919CrossRefGoogle Scholar
  20. 20.
    Cardini G, Muniz-Miranda M, Pagliai M, Schettino V (2007) Theor Chem Acc 117:451–458CrossRefGoogle Scholar
  21. 21.
    Jensen L, Zhao LL, Schatz GC (2007) J Phys Chem C 111:4756–4764CrossRefGoogle Scholar
  22. 22.
    Wu D-Y, Liu X-M, Duan S, Xu X, Ren B, Lin S-H, Tian Z-Q (2008) J Phys Chem C 112:4195–4204CrossRefGoogle Scholar
  23. 23.
    Morton SM, Jensen L (2009) J Am Chem Soc 131:4090–4098CrossRefGoogle Scholar
  24. 24.
    Gaff J, Franzen S (2012) Chem Phys 397:34–41CrossRefGoogle Scholar
  25. 25.
    Zhao LL, Jensen L, Schatz GC (2006) Nano Lett 6:1229–1234CrossRefGoogle Scholar
  26. 26.
    Aikens CM, Schatz GC (2006) J Phys Chem A 110:13317–13324CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr. JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02; Gaussian Inc., Wallingford CTGoogle Scholar
  28. 28.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  29. 29.
    Ramos-Berdullas N, Perez-Juste I, Van Alsenoy C, Mandado M (2015) Phys Chem Chem Phys 17:575–587CrossRefGoogle Scholar
  30. 30.
    Jamroz MH (2004–2010) Vibrational energy distribution analysis, (VEDA 4), WarsawGoogle Scholar
  31. 31.
    Jamroz MH (2013) Spectrochim Acta A 114:220–230CrossRefGoogle Scholar
  32. 32.
    Norman P, Bishop DM, Jensen HJA, Oddershede J (2001) J Chem Phys 115:10323–10334CrossRefGoogle Scholar
  33. 33.
    Hermida-Ramon JM, Guerrini L, Alvarez-Puebla RA (2013) J Phys Chem A 117:4584–4590CrossRefGoogle Scholar
  34. 34.
    Sanchéz-Lozano M, Mandado M, Pérez-Juste I, Hermida-Ramón JM (2014) ChemPhysChem 15:4067–4076CrossRefGoogle Scholar
  35. 35.
    Weinhold F (1998) Natural bond orbital methods. In: Schleyer PVR, Allinger NL, Clark T et al (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, UK, pp 1792–1811Google Scholar
  36. 36.
    Glendening ED (2005) J Phys Chem A 109:11936–11940CrossRefGoogle Scholar
  37. 37.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0.; Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nicolás Ramos-Berdullas
    • 1
  • Diego López-Carballeira
    • 1
  • Marcos Mandado
    • 1
  • Ignacio Pérez-Juste
    • 1
  1. 1.Departamento de Química Física, Facultad de QuímicaUniversidade de VigoVigoSpain

Personalised recommendations