Advertisement

Explicitly correlated interaction potential energy profile of imidazole + CO2 complex

  • S. Dalbouha
  • M. Prakash
  • V. Timón
  • N. Komiha
  • M. Hochlaf
  • M. L. Senent
Regular Article

Abstract

In this paper, the interaction potential energy profiles corresponding to the imidazole + CO2 system are determined using explicitly correlated coupled-cluster methods (CCSD(T)-F12) in combination with the VTZ-F12 basis set. The imidazole + CO2 van der Waals complex, which represents a relevant system for the study of the CO2 capture and storage in new materials, such as the zeolitic imidazolate frameworks (ZIFs), shows three different equilibrium geometries, two planar ones of Cs symmetry and one C1 structure. Their geometrical parameters and harmonic frequencies, as well as the one-dimensional potential energy profiles for the complex formation processes, are provided. Intermolecular bindings occur through the imidazole nitrogen atoms. The interaction energy depends strongly on the two molecule relative orientations. The full-dimensional intermolecular potentials show a significant anisotropy. The implications for the macromolecular simulations of the CO2 capture and sequestration in ZIFs are discussed. Preliminary tests of various theoretical methods (DFT and ab initio) have been performed to search for a methodology suitable for further application in large systems such as the substituted imidazoles (Zn-imidazoles or R-imidazoles). In these tests, the results obtained using CCSD(T)-F12 are employed as benchmarks. Suddenly, the MP2 theory competes with the explicitly correlated methods. MP2 theory corrects the deviation of the density functional theory calculations in the long-range region.

Keywords

ZIFs CO2 capture Ab initio Imidazoles 

Notes

Acknowledgments

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program under Grant No. PIRSES-GA-2012-31754, the COST Action CM1401, the COST Action CM1405 and the FIS2013-40626-P project of the MINECO, Spain. This work has benefited from a French government grant managed by ANR within the frame of the national program investments for the future ANR-11-LABX-022-01. M.P. thanks, the financial support from the LABEX Modélisation & Expérimentation pour la Construction Durable (MMCD, U. Paris-Est). The authors acknowledge the CTI (CSIC) and CESGA for computing facilities.

References

  1. 1.
    Eddaoudi M, Li H, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279CrossRefGoogle Scholar
  2. 2.
    Lu AH, Dai S (eds) (2014) Porous materials for carbon dioxide capture. Springer, BerlinGoogle Scholar
  3. 3.
    Liu Y, Kravtsov VC, Larsen R, Eddaoudi M (2006) Chem Commun 14:1488–1490CrossRefGoogle Scholar
  4. 4.
    Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186–10191CrossRefGoogle Scholar
  5. 5.
    Cui P, Ma Y-G, Zhao H-H, Li B, Cheng J-R, Li P, Balbuena PB, Zhou H-C (2012) J Am Chem Soc 134:18892–18895CrossRefGoogle Scholar
  6. 6.
    Bogle RG, Whitley GS, Soo SC, Johnstone AP, Vallance P (1994) Br J Pharmacol 111:1257–1261CrossRefGoogle Scholar
  7. 7.
    Timón V, Senent ML, Hochlaf M (submitted)Google Scholar
  8. 8.
    Adler TB, Manby FR, Werner H-J (2009) J Chem Phys 130:054106CrossRefGoogle Scholar
  9. 9.
    Rauhut G, Knizia G, Werner H-J (2009) J Chem Phys 130:054105CrossRefGoogle Scholar
  10. 10.
    Al Mogren MM, Denis-Alpizar O, Abdallah DB, Stoecklin T, Halvick P, Senent M-L, Hochlaf M (2014) J Chem Phys 141:044308CrossRefGoogle Scholar
  11. 11.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  12. 12.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford Google Scholar
  13. 13.
    Werner H-J, Knowles PJ et al (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net
  14. 14.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  15. 15.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  16. 16.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  17. 17.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  18. 18.
    Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  19. 19.
    Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1–12CrossRefGoogle Scholar
  20. 20.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  21. 21.
    Becke AD (1989) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1989) Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  24. 24.
    Adler TB, Werner H-J (2009) J Chem Phys 130:241101CrossRefGoogle Scholar
  25. 25.
    Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104CrossRefGoogle Scholar
  26. 26.
    Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106CrossRefGoogle Scholar
  27. 27.
    Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102CrossRefGoogle Scholar
  28. 28.
    Yousaf KE, Peterson KA (2009) J Chem Phys 129:184108CrossRefGoogle Scholar
  29. 29.
    Boys F, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  30. 30.
    Prakash M, Mathivon K, Benoit DM, Chambaud G, Hochlaf M (2014) Phys Chem Chem Phys 16:12503–12509CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  32. 32.
    Zerner MC, Lowe GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589–599CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Brites B, Hochlaf M (2009) J Phys Chem A 113:11107–11111CrossRefGoogle Scholar
  35. 35.
    Lauvergnat D, Senent ML, Jutier L, Hochlaf M (2011) J Chem Phys 135:074301CrossRefGoogle Scholar
  36. 36.
    Yazidi O, Hochlaf M (2013) Phys Chem Chem Phys 15:10158–10166CrossRefGoogle Scholar
  37. 37.
    Yaghlane SB, Cotton CE, Francisco JS, Linguerri R, Hochlaf M (2013) J Chem Phys 139:174313CrossRefGoogle Scholar
  38. 38.
    Ajili Y, Hammami K, Jaidane N-E, Lanza M, Kalugina YN, Lique F, Hochlaf M (2013) Phys Chem Chem Phys 15:10062–10070CrossRefGoogle Scholar
  39. 39.
    Yaghlane SB, Jaidane N-E, Cotton CE, Francisco JS, Al Mogren MM, Linguerri R, Hochlaf M (2014) J Chem Phys 140:244309CrossRefGoogle Scholar
  40. 40.
    Kalugina YN, Buryak I, Ajili Y, Vigasin Y, Jaidane N-E, Hochlaf M (2014) J Chem Phys 140:234310CrossRefGoogle Scholar
  41. 41.
    Mathivon K, Linguerri R, Hochlaf MJ (2013) J Chem Phys 139:164306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Instituto de Estructura de la MateriaCSICMadridSpain
  2. 2.Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRSUniversité Paris-EstMarne-La-ValléeFrance
  3. 3.LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des SciencesUniversité Mohamed VRabatMorocco

Personalised recommendations