Electronic structure of kaempferol–Cu2+ coordination compounds: a DFT, QTAIM and NBO study in the gas phase

  • María del Carmen Ramírez Avi
  • Ana África Márquez García
  • Francisco Partal Ureña
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

A DFT study on the molecular structure of a flavonoid, kaempferol, two anions and four copper complexes has been carried out. Three functionals, namely B3LYP, M06-2X and ωB97X-D, along with 6-311++G(2d,2p) basis set are applied to achieve this goal. The influence of metal coordination on the molecular and electronic structures of kaempferol and its anions is studied by applying quantum theory of atoms in molecules and natural bond order methodology.

Keywords

DFT QTAIM NBO Structure Flavonoid Kaempferol 

Notes

Acknowledgments

Authors are grateful to University of Jaén (UJA) and Andalusian Government (Junta de Andalucía) for financial support. Authors also are grateful to Centro de Servicios de Informática y Redes de Comunicaciones (CSIRC), belonging to the University of Granada (UGR), for computational time and facilities.

References

  1. 1.
    Andersen ØM, Markham KR (eds) (2006) Flavonoids: chemistry, biochemistry and applications. Taylor and Francis, Boca RatonGoogle Scholar
  2. 2.
    Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) J Am Chem Soc 116:4846–4851CrossRefGoogle Scholar
  3. 3.
    Pietta P-G (2000) J Nat Prod 63:1035–1042CrossRefGoogle Scholar
  4. 4.
    Marfak A, Trouillas P, Allais D-P, Champavier Y, Calliste C-A, Duroux J-L (2003) J Agric Food Chem 51:1270–1277CrossRefGoogle Scholar
  5. 5.
    Walle T (2004) Free Rad Biol Med 36:829–837CrossRefGoogle Scholar
  6. 6.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Rad Biol Med 36:838–849CrossRefGoogle Scholar
  7. 7.
    Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Mol Asp Med 31:435–445CrossRefGoogle Scholar
  8. 8.
    Procházková D, Boušová I, Wilhelmová N (2011) Fitoterapia 82:513–523CrossRefGoogle Scholar
  9. 9.
    Han R-M, Zhang J-P, Skibsted LH (2012) Molecules 17:2140–2160CrossRefGoogle Scholar
  10. 10.
    Pal D, Verma P (2013) Int J Pharm Pharm Sci 5:95–98Google Scholar
  11. 11.
    Aparicio S (2010) Int J Mol Sci 11:2017–2038CrossRefGoogle Scholar
  12. 12.
    Rong YZ, Wang ZW, Zhao B (2013) Food Biophys 8:90–94CrossRefGoogle Scholar
  13. 13.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216CrossRefGoogle Scholar
  14. 14.
    Marković ZS, Mentus SV, Dimitrić Marković JM (2009) J Phys Chem A 113:14170–14179CrossRefGoogle Scholar
  15. 15.
    van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, Donné-op den Kelder G, van der Vijgh WJF, Bast A (1996) Chem Res Toxicol 9:1305–1312CrossRefGoogle Scholar
  16. 16.
    Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) Food Chem 97:679–688CrossRefGoogle Scholar
  17. 17.
    Antonczak S (2008) J Mol Struct Theochem 856:38–45CrossRefGoogle Scholar
  18. 18.
    Sarkar A, Middya TR, Jana AD (2012) J Mol Model 18:2621–2631CrossRefGoogle Scholar
  19. 19.
    Kumar KS, Kumaresan R (2012) Comput Theor Chem 985:14–22CrossRefGoogle Scholar
  20. 20.
    Grazul M, Budzisz E (2009) Coord Chem Rev 253:2588–2598CrossRefGoogle Scholar
  21. 21.
    Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM (2013) Med Res Rev 4:677–702Google Scholar
  22. 22.
    Sanna D, Ugone V, Lubinu G, Micera G, Garribba E (2014) J Inorg Biochem 140:173–184CrossRefGoogle Scholar
  23. 23.
    Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I (2014) Eur J Med Chem 86:103–112CrossRefGoogle Scholar
  24. 24.
    Kepp KP (2012) Chem Rev 112:5193–5239CrossRefGoogle Scholar
  25. 25.
    Migliorini C, Porciatti E, Luczkowski M, Valensin D (2012) Coord Chem Rev 256:352–368CrossRefGoogle Scholar
  26. 26.
    Jomova K, Valko M (2011) Toxicology 283:65–87CrossRefGoogle Scholar
  27. 27.
    Halliwell B, Gutteridge JMC (2013) Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  28. 28.
    Crichton RR (2008) Biological inorganic chemistry: an introduction. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, LondonCrossRefGoogle Scholar
  31. 31.
    Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules. Wiley-VCH, WeinheimGoogle Scholar
  32. 32.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2:1–42CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2013)Google Scholar
  35. 35.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11(46):10757–10816CrossRefGoogle Scholar
  36. 36.
    Neese F (2009) Coord Chem Rev 253:526–563CrossRefGoogle Scholar
  37. 37.
    Tsipis AC (2014) Coord Chem Rev 272:1–29CrossRefGoogle Scholar
  38. 38.
    Zhang W, Truhlar DG, Tang M (2013) J Chem Theory Comput 9:2965–397739Google Scholar
  39. 39.
    Scuseria GE, Staroverov VN (2005) Progress in the development of exchange-correlation functionals in theory and applications of computational chemistry. In: Dykstra CE et al (eds) The first forty years. Elsevier, AmsterdamThe NetherlandsGoogle Scholar
  40. 40.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  41. 41.
    Shil S, Bhattacharya D, Sarkar S, Misra A (2013) J Phys Chem A 117:4945–4955CrossRefGoogle Scholar
  42. 42.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  43. 43.
    Rulíšek L, Vondrášek J (1998) J Inorg Biochem 71:115–117CrossRefGoogle Scholar
  44. 44.
    Dudev M, Wang J, Dudev T, Lim C (2006) J Phys Chem B 110:1889–1895CrossRefGoogle Scholar
  45. 45.
    Lapouge C, Dangleterre L, Cornard J-P (2006) J Phys Chem A 110:12494–12500CrossRefGoogle Scholar
  46. 46.
    Ren J, Meng S, Lekka ChE, Kaxiras E (2008) J Phys Chem B 112:1845–1850CrossRefGoogle Scholar
  47. 47.
    Lekka ChE, Ren J, Meng S, Kaxiras E (2009) J Phys Chem B 113:6478–6483CrossRefGoogle Scholar
  48. 48.
    Symonowicz M, Kolavek M (2012) Biotechnol Food Sci 76:35–45Google Scholar
  49. 49.
    Tarahovsky YS, Kim YA, Yagulnik A, Muzafarov EN (2014) Biochim Biophys Acta 1838:1235–1246CrossRefGoogle Scholar
  50. 50.
    Agieienko VN, Kolesnik YN, Kalugiu ON (2014) J Chem Phys 140:194501CrossRefGoogle Scholar
  51. 51.
    AIM200 (2002) A program to analyze and visualize atoms in molecules. SBK-SoftwareGoogle Scholar
  52. 52.
    Macchi P, Sironi A (2003) Coord Chem Rev 238–239:383–412CrossRefGoogle Scholar
  53. 53.
    Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633–662CrossRefGoogle Scholar
  54. 54.
    Nakanishi W, Hayashi S, Narahara K (2009) J Phys Chem A 113:10050–10057CrossRefGoogle Scholar
  55. 55.
    Stalke D (2011) Chem Eur J 17:9264–9278CrossRefGoogle Scholar
  56. 56.
    Bagchi S, Mandal D, Ghosh D, Das AK (2013) J Phys Chem A 117:1601–1613CrossRefGoogle Scholar
  57. 57.
    Cukrowski I, de Lange JH, Mitoraj M (2014) J Phys Chem A 118:623–637CrossRefGoogle Scholar
  58. 58.
    International Union of Pure and Applied Chemistry (2005) Nomenclature of inorganic chemistry: IUPAC recommendations. RSC Publishing, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • María del Carmen Ramírez Avi
    • 1
  • Ana África Márquez García
    • 1
  • Francisco Partal Ureña
    • 1
  1. 1.Department of Physical and Analytical Chemistry, Faculty of Experimental SciencesUniversity of JaénJaénSpain

Personalised recommendations