Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

  • Zeineb Helali
  • Abdesslem Jedidi
  • Alexis MarkovitsEmail author
  • Christian Minot
  • Manef Abderrabba
Regular Article


Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step.


DFT TiO2 rutile SMSI Metal–oxide interface Reduction Charge transfer 



We are grateful to CMCU-PHC (09G 1212) and the Institut Français de Cooperation in Tunisia (IFC) for their financial support. The authors thank GENCI and CCRE for computing facilities.


  1. 1.
    Helali Z, Markovits A, Minot C, Abderrabba M (2013) Chem Phys Lett 565:45CrossRefGoogle Scholar
  2. 2.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107(5):1692CrossRefGoogle Scholar
  3. 3.
    Ciobica IM, van Santen RA (2003) J Phys Chem B 107(16):3808CrossRefGoogle Scholar
  4. 4.
    Sellers H, Gislason J (1999) Surf Sci 426(2):147CrossRefGoogle Scholar
  5. 5.
    Souza Monteiro R, Paes LW, Carneiro JWDM, Aranda DA (2008) J Cluster Sci 19(4):601CrossRefGoogle Scholar
  6. 6.
    Jedidi A, Markovits A, Minot C, Abderrabba M, Van Hove MA (2014) PCCP 16:20703CrossRefGoogle Scholar
  7. 7.
    Jedidi A, Norelus W, Markovits A, Minot C, Illas F, Abderrabba M (2013) Theor Chem Acc 133(2):1Google Scholar
  8. 8.
    Markvoort AJ, van Santen RA, Hilbers PAJ, Hensen EJM (2012) Angew Chem Int Ed 51(36):9015CrossRefGoogle Scholar
  9. 9.
    van Santen RA, Markvoort AJ, Filot IAW, Ghouri MM, Hensen EJM (2013) PCCP 15(40):17038CrossRefGoogle Scholar
  10. 10.
    Elahifard MR, Jigato MP, Niemantsverdriet JW (2012) ChemPhysChem 13(1):89CrossRefGoogle Scholar
  11. 11.
    Bond GC (1983) Spec Period Report 6:27Google Scholar
  12. 12.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100(1):170CrossRefGoogle Scholar
  13. 13.
    Calzado CJ, San Miguel MA, Sanz JF (1999) J Phys Chem B 103(3):480CrossRefGoogle Scholar
  14. 14.
    Giordano L, Pacchioni G, Bredow T, Sanz JF (2001) Surf Sci 471(1–3):21CrossRefGoogle Scholar
  15. 15.
    Gomes JRB, Illas F, Hernández NC, Márquez A, Sanz JF (2002) Phys Rev B 65(12):125414CrossRefGoogle Scholar
  16. 16.
    Grau-Crespo R, Hernandez NC, Sanz JF, de Leeuw NH (2007) J Phys Chem C 111(28):10448CrossRefGoogle Scholar
  17. 17.
    Helali Z, Markovits A, Minot C, Abderrabba M (2012) Struct Chem 23(5):1309CrossRefGoogle Scholar
  18. 18.
    Hernández NC, Graciani J, Márquez A, Sanz JF (2005) Surf Sci 575(1–2):189CrossRefGoogle Scholar
  19. 19.
    Hernández NC, Sanz JF (2002) J Phys Chem B 106(44):11495CrossRefGoogle Scholar
  20. 20.
    San Miguel MA, Calzado CJ, Sanz JF (2001) J Phys Chem B 105(9):1794CrossRefGoogle Scholar
  21. 21.
    Wörz AS, Heiz U, Cinquini F, Pacchioni G (2005) J Phys Chem B 109(39):18418CrossRefGoogle Scholar
  22. 22.
    Márquez A, Graciani J, Sanz J (2010) Theor Chem Acc 126(3–4):265CrossRefGoogle Scholar
  23. 23.
    Fan L, Fujimoto K (1994) J Catal 150(1):217CrossRefGoogle Scholar
  24. 24.
    Bracey JD, Burch R (1984) J Catal 86(2):384CrossRefGoogle Scholar
  25. 25.
    Haller G, Resasco DE (1989) Adv Catal 36:173Google Scholar
  26. 26.
    Tsubaki N, Fujimoto K (2003) Top Catal 22(3):325CrossRefGoogle Scholar
  27. 27.
    Fernandez S, Alikhani E, Markovits A, Skalli MK, Minot C (2009) Chem Phys Lett 475(4–6):215CrossRefGoogle Scholar
  28. 28.
    Fernandez S, Markovits A, Fuster F, Minot C (2007) J Phys Chem C 111(18):6781CrossRefGoogle Scholar
  29. 29.
    Sanz JF, Márquez A (2007) J Phys Chem C 111(10):3949CrossRefGoogle Scholar
  30. 30.
    Fernandez SB, Markovits A, Minot C (2008) J Phys Chem C 112(36):14010CrossRefGoogle Scholar
  31. 31.
    Kresse G, Hafner J (1994) Phys Rev B 49(20):14251CrossRefGoogle Scholar
  32. 32.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmüller J (1996) J Phys Rev B 54:11169CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  35. 35.
    Blochl PE (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert D (1999) Phys Rev B 59(3):1758CrossRefGoogle Scholar
  37. 37.
    Bredow T, Giordano L, Cinquini F, Pacchioni G (2004) Phys Rev B 70(3):035419CrossRefGoogle Scholar
  38. 38.
    Hameeuw KJ, Cantele G, Ninno D, Trani F, Iadonisi G (2006) J Chem Phys 124(2):024708CrossRefGoogle Scholar
  39. 39.
    Pilme J, Silvi B, Alikhani ME (2003) J Phys Chem A 107(22):4506CrossRefGoogle Scholar
  40. 40.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939Google Scholar
  41. 41.
    Dewar MJS (1951) Bull Soc Chim Fr 18(3–4):C71Google Scholar
  42. 42.
    Nguyen_Trong A (2007) Frontier orbitals: a practical manualGoogle Scholar
  43. 43.
    Nguyen_Trong A, Eisenstein O (1977) New J Chem 1(1):61Google Scholar
  44. 44.
    Moruzzi VL, Williams AR, Janak JF (1977) Phys Rev B 15(6):2854CrossRefGoogle Scholar
  45. 45.
    Ayed O, Manceron L, Silvi B (1988) J Phys Chem 92(1):37CrossRefGoogle Scholar
  46. 46.
    Leconte J, Markovits A, Skalli MK, Minot C, Belmajdoub A (2002) Surf Sci 497(1–3):194CrossRefGoogle Scholar
  47. 47.
    Shustorovich E (1986) Surf Sci Rep 6(1):1CrossRefGoogle Scholar
  48. 48.
    Shustorovich E (1990) The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 37. Academic Press, p 101.
  49. 49.
    Kaupp M, Stoll H, Preuss H (1990) J Comput Chem 11:1029CrossRefGoogle Scholar
  50. 50.
    Adamo C, Barone V (1999) J Chem Phys 110(13):6158CrossRefGoogle Scholar
  51. 51.
    Koukounas C, Kardahakis S, Mavridis A (2005) J Chem Phys 123(7):074327CrossRefGoogle Scholar
  52. 52.
    Alikhani ME, Manceron L (2015) J Mol Spectrosc (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zeineb Helali
    • 1
    • 2
  • Abdesslem Jedidi
    • 1
    • 2
    • 3
  • Alexis Markovits
    • 1
    Email author
  • Christian Minot
    • 1
  • Manef Abderrabba
    • 2
  1. 1.Laboratoire de Chimie Théorique, UPMC Univ Paris 06, UMR 7616Sorbonne UniversitésParisFrance
  2. 2.Laboratoire Matériaux Molécules et ApplicationsUniversité de CarthageLa MarsaTunisia
  3. 3.Modeling Group, Division of Physical Sciences and Engineering, KAUST Catalysis CenterKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations