Separating nuclear spin isomers using a pump–dump laser scheme

  • Rana Obaid
  • Daniel Kinzel
  • Markus Oppel
  • Leticia González
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

The concept of nuclear spin isomers was already introduced in the early days of quantum mechanics. Despite its importance, not much work has been done to separate them experimentally by pushing the ratio away from its equilibrium value. We propose to use ultrashort laser pulses in a pump–dump-like experiment to enhance the ratio between different nuclear spin isomers. Exemplary wave packet simulations with optimized femtosecond pump and dump laser pulses are shown on a quinodimethane derivative to illustrate that the ratio between two different groups of nuclear spin isomers is enhanced.

Keywords

Pump–probe spectroscopy Quantum dynamics Nuclear spin isomers 

Notes

Acknowledgments

We specially would like to thank Jörn Manz for suggesting these calculations but also Monika Leibscher, Thomas Grohmann and Omar Deeb for fruitful discussions. Financial support by the Deutsche Forschungsgemeinschaft via projects GO 1059/7-3 and MA 515/25-3 is gratefully acknowledged.

References

  1. 1.
    Eucken A (1912) Sitzber Preuss Akad Wiss 141Google Scholar
  2. 2.
    Mecke R (1925) Z Physik 31:709CrossRefGoogle Scholar
  3. 3.
    Heisenberg W (1927) Z Physik 41:239CrossRefGoogle Scholar
  4. 4.
    Hund F (1927) Z Physik 42:93CrossRefGoogle Scholar
  5. 5.
    Bonhoeffer K, Harteck P (1929) Naturwissenschaften 17:182CrossRefGoogle Scholar
  6. 6.
    Farkas A (1935) Orthohydrogen, parahydrogen and heavy hydrogen. Cambridge University Press, LondonGoogle Scholar
  7. 7.
    Buntkowsky G, Limbach HH (2006) Dihydrogen and symmetry: the role of symmetry on the chemistry of dihydrogen transfer in the light of NMR spectroscopy. In: Hynes JT, Klinman J, Limbach HH, Schowen RL (eds) Hydrogen-transfer reactions, vol 2. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Quack M (1977) Mol Phys 34:477CrossRefGoogle Scholar
  9. 9.
    Bunker PR, Jensen P (2009) Spectroscopy and broken symmetry. Elsevier, AmsterdamCrossRefGoogle Scholar
  10. 10.
    Chapovsky PL, Hermans LJF (1999) Annu Rev Phys Chem 50:315CrossRefGoogle Scholar
  11. 11.
    Sandler YL (1954) J Phys Chem 58:58CrossRefGoogle Scholar
  12. 12.
    Cunningham CM, Johnston HL (1958) J Am Chem Soc 80:2382CrossRefGoogle Scholar
  13. 13.
    Panfilov V, Strunin V, Chapovsky PL (1983) Sov Phys J Exp Theor Phys 58:510Google Scholar
  14. 14.
    Chapovsky PL, Krasnoperov LN, Panfilov VN, Strunin VP (1985) Chem Phys 97:449CrossRefGoogle Scholar
  15. 15.
    Bakarev AE, Chapovsky PL (1986) J Exp Theor Phys Lett 44:4Google Scholar
  16. 16.
    Chapovsky PL (1990) Sov Phys J Exp Theor Phys 70:895Google Scholar
  17. 17.
    Chapovsky P, Cosléou J, Herlemont F, Khelkhal M, Legrand J (2000) Chem Phys Lett 322:424CrossRefGoogle Scholar
  18. 18.
    Peters G, Schramm B (1999) Chem Phys Lett 302:181CrossRefGoogle Scholar
  19. 19.
    Sun ZD, Takagi K, Matsushima F (2005) Science 310(5756):1938CrossRefGoogle Scholar
  20. 20.
    Tikhonov VI, Volkov AA (2002) Science 296(5577):2363CrossRefGoogle Scholar
  21. 21.
    Kravchuk T, Reznikov M, Tichonov P, Avidor N, Meir Y, Bekkerman A, Alexandrowicz G (2011) Science 331(6015):319CrossRefGoogle Scholar
  22. 22.
    Horke DA, Chang YP, Długołȩcki K, Küpper J (2014) Chem Int Ed 53:11965CrossRefGoogle Scholar
  23. 23.
    Gel’mukhanov FK, Shalagin AM (1979) J Exp Theor Phys Lett 29:773Google Scholar
  24. 24.
    Al-Jabour S (2011) Molecular symmetry, quantum chemistry and dynamics: simulation of laser driven molecular torsion in the presence of a conical intersection (Dissertation, Freie Universität Berlin)Google Scholar
  25. 25.
    Fujimura Y, González L, Hoki K, Kröner D, Manz J, Ohtsuki Y (1999) Chem Phys Lett 310:578CrossRefGoogle Scholar
  26. 26.
    Brackhagen O, Busse H, Giraud-Girard J, Manz J, Oppel M (2000) J Chem Phys 112:8819CrossRefGoogle Scholar
  27. 27.
    Evers F, Giraud-Girard J, Grimme S, Manz J, Monte C, Oppel M, Rettig W, Saalfrank P, Zimmermann P (2001) J Phys Chem A 105:2911CrossRefGoogle Scholar
  28. 28.
    Hoki K, Kröner D, Manz J (2001) Chem Phys 267:59CrossRefGoogle Scholar
  29. 29.
    Manz J, Proppe B, Schmidt B (2002) Phys Chem Chem Phys 4:1876CrossRefGoogle Scholar
  30. 30.
    Fujimura Y, González L, Kröner D, Manz J, Mehdaoui I, Schmidt B (2004) Chem Phys Lett 386:248CrossRefGoogle Scholar
  31. 31.
    Kröner D, Klaumützer B (2007) Phys Chem Chem Phys 9:5009CrossRefGoogle Scholar
  32. 32.
    Obaid R, Leibscher M (2015) J Chem Phys 142(6):064315CrossRefGoogle Scholar
  33. 33.
    Obaid R, Kinzel D, Oppel M, González L (2014) J Chem Phys 141:164323CrossRefGoogle Scholar
  34. 34.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157CrossRefGoogle Scholar
  35. 35.
    Belz S, Deeb O, González L, Grohman T, Kinzel D, Leibscher M, Manz J, Obaid R, Oppel M, Xavier GD, Zilberg S (2013) Z Phys Chem 227:1021CrossRefGoogle Scholar
  36. 36.
    Lehtovaara L, Toivanen J, Eloranta J (2007) J Comp Phys 221:148CrossRefGoogle Scholar
  37. 37.
    Feit MD, Fleck JA Jr (1983) J Chem Phys 78:301CrossRefGoogle Scholar
  38. 38.
    Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer HD, Lipkin N, Roncero O, Kosloff R (1991) J Comput Phys 94:59CrossRefGoogle Scholar
  39. 39.
    Levy DH (1981) Science 214:263CrossRefGoogle Scholar
  40. 40.
    Rulliere C (2004) Femtosecond laser pulses: principles and experiments. Advanced texts in physics. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rana Obaid
    • 1
    • 2
  • Daniel Kinzel
    • 1
  • Markus Oppel
    • 1
  • Leticia González
    • 1
  1. 1.Institut für Theoretische ChemieUniversität WienViennaAustria
  2. 2.Applied Chemistry DepartmentPalestine Polytechnic UniversityHebronPalestine

Personalised recommendations