Prototypical metal–oxo bonds: the reactions of Cr(PF3)6, Fe(PF3)5, and Ni(PF3)4 with oxygen

  • Zhi Sun
  • Henry F. SchaeferIII
  • Yaoming Xie
  • Yongdong Liu
  • Rugang Zhong
Regular Article


Terminally bound oxo complexes of late transition metals have been difficult to synthesize or isolate. Their scarcity is in part due to the electronic repulsion between oxo ligands and metal elements with highly occupied d orbitals. This study attempts to provide extra stability to such metal–oxo species. The prototypical metal–oxo trifluorophosphane complexes [(PF3)5CrO, (PF3)4FeO, and (PF3)3NiO] are studied here. The results are compared with the corresponding carbonyl counterparts [(CO)5CrO, (CO)4FeO, and (CO)3NiO]. Predicted bond dissociation energies are 90 (Cr–O), 83 (Fe–O), and 59 (Ni–O) kcal/mol, higher than those of their carbonyl counterparts by around 10 kcal/mol. Consistent with bonding considerations and population analyses, the metal–oxo bonds are strengthened from the carbonyl to the trifluorophosphine complexes. Although the improvement is modest, it proves clearly that strong electron-withdrawing frameworks help in stabilizing metal–oxo complexes. This general idea may be utilized in further studies to seek or even design elusive terminal metal–oxo species and to keep pushing the limits of this area. In addition, improved viabilities are also found for the dioxygen–metal complexes [(PF3)5CrO2, (PF3)4FeO2, and (PF3)3NiO2], compared with their carbonyl counterparts.


DFT Bond dissociation energies Oxo–metal trifluorophosphane complexes Dioxygen–metal trifluorophosphane complexes Metal–oxo bonds 



This research was supported by the U. S. National Science Foundation (No. CHE-1361178), the National Natural Science Foundation of China (No. 20903006), and the Beijing Natural Science Foundation (No. 2092008).

Supplementary material

214_2015_1643_MOESM1_ESM.doc (87 kb)
Supplementary material 1 (DOC 87 kb)


  1. 1.
    Kimble ML, Castleman AW, Mitric R, Burgel C, Bonacic-Koutecky V (2004) J Am Chem Soc 126(8):2526–2535CrossRefGoogle Scholar
  2. 2.
    Radosevich AT, Musich C, Toste FD (2005) J Am Chem Soc 127(4):1090–1091CrossRefGoogle Scholar
  3. 3.
    Hanson SK, Wu R, Silks LAP (2012) Angew Chem Int Ed 51(14):3410–3413CrossRefGoogle Scholar
  4. 4.
    Gong Y, Zhou MF, Andrews L (2009) Chem Rev 109(12):6765–6808CrossRefGoogle Scholar
  5. 5.
    Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110(2):949–1017CrossRefGoogle Scholar
  6. 6.
    Zhang M, de Respinis M, Frei H (2014) Nat Chem 6(4):362–367CrossRefGoogle Scholar
  7. 7.
    Hong S, Pfaff FF, Kwon E, Wang Y, Seo M-S, Bill E, Ray K, Nam W (2014) Angew Chem Int Ed 53(39):10403–10407CrossRefGoogle Scholar
  8. 8.
    Nguyen AI, Hadt RG, Solomon EI, Tilley TD (2014) Chem Sci 5(7):2874–2878CrossRefGoogle Scholar
  9. 9.
    Holm RH (1987) Chem Rev 87(6):1401–1449CrossRefGoogle Scholar
  10. 10.
    Winkler JR, Gray HB (2012) Electronic structures of oxo–metal ions. In: Mingos DMP, Day P, Dahl JP (eds) Molecular electronic structures of transition metal complexes I, in electronic structures of oxo–metal ions, vol 142., Structure and bondingSpringer, Berlin Heidelberg, pp 17–28CrossRefGoogle Scholar
  11. 11.
    Mayer JM, Thorn DL, Tulip TH (1985) J Am Chem Soc 107(25):7454–7462CrossRefGoogle Scholar
  12. 12.
    Spaltenstein E, Erikson TKG, Critchlow SC, Mayer JM (1989) J Am Chem Soc 111(2):617–623CrossRefGoogle Scholar
  13. 13.
    Haymotherwell RS, Wilkinson G, Hussainbates B, Hursthouse MB (1993) Polyhedron 12(16):2009–2012CrossRefGoogle Scholar
  14. 14.
    O’Halloran KP, Zhao CC, Ando NS, Schultz AJ, Koetzle TF, Piccoli PMB, Hedman B, Hodgson KO, Bobyr E, Kirk ML, Knottenbelt S, Depperman EC, Stein B, Anderson TM, Cao R, Geletii YV, Hardcastle KI, Musaev DG, Neiwert WA, Fang XK, Morokuma K, Wu SX, Kogerler P, Hill CL (2012) Inorg Chem 51(13):7025–7031CrossRefGoogle Scholar
  15. 15.
    Dewar MJS (1951) Bull Soc Chim Fr 18:C71–C79Google Scholar
  16. 16.
    Chatt J, Duncanson LA (1953) J Chem Soc 1953:2939–2947CrossRefGoogle Scholar
  17. 17.
    Mingos DMP (2001) J Organomet Chem 635(1–2):1–8CrossRefGoogle Scholar
  18. 18.
    Mond L, Langer C, Quincke F (1890) J Chem Soc Trans 57:749–753CrossRefGoogle Scholar
  19. 19.
    Werner H (1990) Angew Chem-Int Ed Engl 29(10):1077–1089CrossRefGoogle Scholar
  20. 20.
    Sen A (1993) Acc Chem Res 26(6):303–310CrossRefGoogle Scholar
  21. 21.
    Solomon EI, Jones PM, May JA (1993) Chem Rev 93(8):2623–2644CrossRefGoogle Scholar
  22. 22.
    Hurlburt PK, Rack JJ, Luck JS, Dec SF, Webb JD, Anderson OP, Strauss SH (1994) J Am Chem Soc 116(22):10003–10014CrossRefGoogle Scholar
  23. 23.
    Jonas V, Thiel W (1995) J Chem Phys 102(21):8474–8484CrossRefGoogle Scholar
  24. 24.
    Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117(1):486–494CrossRefGoogle Scholar
  25. 25.
    Xu Q (2002) Coord Chem Rev 231(1–2):83–108CrossRefGoogle Scholar
  26. 26.
    Calderazzo F (2005) Carbonyl complexes of the transition metals. In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, Chichester, pp 764–781Google Scholar
  27. 27.
    Sun Z, Schaefer HF, Xie YM, Liu YD, Zhong RG (2014) J Comput Chem 35(13):998–1009CrossRefGoogle Scholar
  28. 28.
    Chatt J (1950) Nature 165(4199):637–638CrossRefGoogle Scholar
  29. 29.
    Nixon JF (1985) Adv Inorg Chem 29:41–141CrossRefGoogle Scholar
  30. 30.
    Braga M (1985) Inorg Chem 24(17):2702–2706CrossRefGoogle Scholar
  31. 31.
    Frenking G, Wichmann K, Frohlich N, Grobe J, Golla W, Le Van D, Krebs B, Lage M (2002) Organometallics 21(14):2921–2930CrossRefGoogle Scholar
  32. 32.
    Zou R, Li QS, Xie YM, King RB, Schaefer HF (2008) Chem Eur J 14(35):11149–11157CrossRefGoogle Scholar
  33. 33.
    Yang HQ, Li QS, Xie YM, King RB, Schaefer HF (2010) J Phys Chem A 114(33):8896–8901CrossRefGoogle Scholar
  34. 34.
    Kruck T, Baur K (1965) Angew Chem 77(11):505–506CrossRefGoogle Scholar
  35. 35.
    Timms PL (1969) J Chem Soc D Chem Commun (18):1033a–1033aGoogle Scholar
  36. 36.
    Severson SJ, Cymbaluk TH, Ernst RD, Higashi JM, Parry RW (1983) Inorg Chem 22(26):3833–3834CrossRefGoogle Scholar
  37. 37.
    Bennett MA, Johnson RN, Turney TW (1976) Inorg Chem 15(11):2938–2941CrossRefGoogle Scholar
  38. 38.
    Drews T, Rusch D, Seidel S, Willemsen S, Seppelt K (2008) Chem Eur J 14(14):4280–4286CrossRefGoogle Scholar
  39. 39.
    Hammill CL, Clark RJ, Ross CW, Marshall AG, Schmutz J (1997) Inorg Chem 36(26):5973–5977CrossRefGoogle Scholar
  40. 40.
    Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds. VCH, WeinheimCrossRefGoogle Scholar
  41. 41.
    Ohshita Y, Ishikawa M, Kada T, Machida H, Ogura A (2005) Jpn J Appl Phys 2 44(8–11):L315–L317CrossRefGoogle Scholar
  42. 42.
    Ishikawa M, Muramoto I, Machida H, Ohshita Y, Imai S, Ogura A (2007) Jpn J Appl Phys 1 46(2):474–477CrossRefGoogle Scholar
  43. 43.
    Landheer K, Rosenberg SG, Bernau L, Swiderek P, Utke I, Hagen CW, Fairbrother DH (2011) J Phys Chem C 115(35):17452–17463CrossRefGoogle Scholar
  44. 44.
    Elbadawi C, Toth M, Lobo CJ (2013) ACS Appl Mater Interfaces 5(19):9372–9376CrossRefGoogle Scholar
  45. 45.
    Shaik S, Hirao H, Kumar D (2007) Nat Prod Rep 24(3):533–552CrossRefGoogle Scholar
  46. 46.
    Fanfarillo M, Cribb HE, Downs AJ, Greene TM, Almond MJ (1992) Inorg Chem 31(13):2962–2973CrossRefGoogle Scholar
  47. 47.
    Downs AJ, Greene TM, Gordon CM (1995) Inorg Chem 34(24):6191–6198CrossRefGoogle Scholar
  48. 48.
    Ziegler T, Autschbach J (2005) Chem Rev 105(6):2695–2722CrossRefGoogle Scholar
  49. 49.
    Bühl M, Kabrede H (2006) J Chem Theory Comput 2(5):1282–1290CrossRefGoogle Scholar
  50. 50.
    Sieffert N, Bühl M (2010) J Am Chem Soc 132(23):8056–8070CrossRefGoogle Scholar
  51. 51.
    Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133(33):12994–12997CrossRefGoogle Scholar
  52. 52.
    Lonsdale R, Oláh J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133(39):15464–15474CrossRefGoogle Scholar
  53. 53.
    Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133(20):7977–7984CrossRefGoogle Scholar
  54. 54.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  55. 55.
    Becke AD (1993) J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  56. 56.
    Perdew JP (1986) Phys Rev B 33(12):8822–8824CrossRefGoogle Scholar
  57. 57.
    Becke AD (1988) Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  58. 58.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125(19):194101CrossRefGoogle Scholar
  59. 59.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120(1–3):215–241CrossRefGoogle Scholar
  60. 60.
    Dunning TH (1989) J Chem Phys 90(2):1007–1023CrossRefGoogle Scholar
  61. 61.
    Scott AP, Radom L (1996) J Phys Chem 100(41):16502–16513CrossRefGoogle Scholar
  62. 62.
    Wong MW (1996) Chem Phys Lett 256(4–5):391–399CrossRefGoogle Scholar
  63. 63.
    Papas BN, Schaefer HF (2006) J Mol Struct 768(1–3):175–181CrossRefGoogle Scholar
  64. 64.
    Glendening ED, Landis CR, Weinhold F (2012) WIREs Comput Mol Sci 2(1):1–42CrossRefGoogle Scholar
  65. 65.
    Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A.01. Gaussian Inc, WallingfordGoogle Scholar
  67. 67.
    Keith TA AIMALL. AIMAll (Version 13.11.04), TK Gristmill Software, Overland Park KS, USA, 2013 (aimtkgristmillcom)Google Scholar
  68. 68.
    Jahn HA, Teller E (1937) Proc R Soc Lond A 161(905):220–235CrossRefGoogle Scholar
  69. 69.
    Bersuker IB (2001) Chem Rev 101(4):1067–1114CrossRefGoogle Scholar
  70. 70.
    Friedman JF, Miller TM, Friedman-Schaffer JK, Viggiano AA, Rekha GK, Stevens AE (2008) J Chem Phys 128(10):104303CrossRefGoogle Scholar
  71. 71.
    Jasinski JP, Wood JH, Holt SL, Asprey LB (1975) J Chem Phys 63(2):757–771CrossRefGoogle Scholar
  72. 72.
    Jasinski JP, Holt SL, Wood JH, Moskowitz JW (1975) J Chem Phys 63(4):1429–1444CrossRefGoogle Scholar
  73. 73.
    Cook GK, Mayer JM (1995) J Am Chem Soc 117(27):7139–7156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Life Science and BioengineeringBeijing University of TechnologyBeijingChina
  2. 2.Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations