Ab initio study in the hydration process of metaphosphoric acid: the importance of the pnictogen interactions

  • Ibon Alkorta
  • Luis Miguel Azofra
  • José Elguero
Regular Article


A theoretical study of the hydration of metaphosphoric acid to yield phosphoric acid has been carried out by means of MP2/6-31+G(d,p) and MP2/aug-cc-pVTZ computational levels. Up to three explicit water molecules have been considered as well as the PCM solvation model to account for the effect of the bulk water. The reaction profile has been analyzed using the conceptual DFT methodology. The reactant structure is very dependent on the number of water molecules. The inclusion of more than one water molecule produces important cooperative effects and a shortening of the O···P pnictogen interaction besides the reaction barrier drops about 50 kJ mol−1. Reaction force at ξ 1 indicates the decreasing in the angular stress in the reaction site before reaching the TS as more explicit water molecules are taken into account. The analysis of the reaction electronic flux shows that for the three mechanisms studied, the principal reactive changes occur in the TS zone, while reactants and products remain in a zero-flux regime.


HPO3 Chemical reactivity Noncovalent interactions CDFT MP2 



This work has been supported by the CTQ2012–35513–C02–02 (MINECO) and Fotocarbon S2013/MIT–2841 (Comunidad Autónoma de Madrid) Projects. Also, LMA thanks the MICINN for a Ph.D. Grant (number BES–2010–031225). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Wilkinson A, McNaught AD (1997) Compendium of chemical terminology. The “Gold Book”, 2nd edn. IUPAC, Oxford, UKGoogle Scholar
  2. 2.
    Guthrie JP (1977) J Am Chem Soc 99:3991–4001CrossRefGoogle Scholar
  3. 3.
    Gevrey S, Luna A, Haldys V, Tortajada J, Morizur J-P (1998) J Chem Phys 108:2458–2465CrossRefGoogle Scholar
  4. 4.
    Hu C-H, Brinck T (1999) J Phys Chem A 103:5379–5386CrossRefGoogle Scholar
  5. 5.
    Loncke PG, Berti PJ (2006) J Am Chem Soc 128:6132–6140CrossRefGoogle Scholar
  6. 6.
    Iché-Tarrat N, Barthelat J-C, Rinaldi D, Vigroux A (2005) J Phys Chem B 109:22570–22580CrossRefGoogle Scholar
  7. 7.
    Davies JE, Doltsinis NL, Kirby AJ, Roussev CD, Sprik M (2002) J Am Chem Soc 124:6594–6599CrossRefGoogle Scholar
  8. 8.
    Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503CrossRefGoogle Scholar
  9. 9.
    Bauzá A, Ramis R, Frontera A (2014) J Phys Chem A 118:2827–2834CrossRefGoogle Scholar
  10. 10.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  11. 11.
    Scheiner S (2011) J Chem Phys 134:094315CrossRefGoogle Scholar
  12. 12.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  13. 13.
    Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  14. 14.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) J Chem Theory Comput 8:2320–2327CrossRefGoogle Scholar
  15. 15.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) J Phys Chem A 117:183–191CrossRefGoogle Scholar
  16. 16.
    Scheiner S (2012) Acc Chem Res 46:280–288CrossRefGoogle Scholar
  17. 17.
    Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:5199–5206CrossRefGoogle Scholar
  18. 18.
    Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:4981–4987CrossRefGoogle Scholar
  19. 19.
    Sánchez-Sanz G, Alkorta I, Trujillo C, Elguero J (2013) ChemPhysChem 14:1656–1665CrossRefGoogle Scholar
  20. 20.
    Sánchez-Sanz G, Trujillo C, Solimannejad M, Alkorta I, Elguero J (2013) Phys Chem Chem Phys 15:14310–14318CrossRefGoogle Scholar
  21. 21.
    Scheiner S (2013) CrystEngComm 15:3119–3124CrossRefGoogle Scholar
  22. 22.
    Azofra LM, Alkorta I, Elguero J (2014) ChemPhysChem 15:3663–3670CrossRefGoogle Scholar
  23. 23.
    Bauzá A, Mooibroek TJ, Frontera A (2015) Chem Commun 51:1491–1493CrossRefGoogle Scholar
  24. 24.
    Hobza P, Müller-Dethlefs K (2009) Non-Covalent Interactions. The Royal Society of Chemistry, CambridgeGoogle Scholar
  25. 25.
    Murray J, Lane P, Clark T, Riley K, Politzer P (2012) J Mol Model 18:541–548CrossRefGoogle Scholar
  26. 26.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, GAUSSIAN09, Revision D.01, Wallingford CT, 2009Google Scholar
  29. 29.
    Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Clarendon Press, OxfordGoogle Scholar
  30. 30.
    Popelier PLA (2000) Atoms In Molecules. An introduction, Prentice Hall, Harlow, UKGoogle Scholar
  31. 31.
    Keith TA, AIMAll (Version 13.11.04), TK Gristmill Software, 2013Google Scholar
  32. 32.
    Del Bene JE (1993) J Phys Chem 97:107–110CrossRefGoogle Scholar
  33. 33.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  34. 34.
    Xantheas SS, Dunning TH (1993) J Chem Phys 99:8774–8792CrossRefGoogle Scholar
  35. 35.
    Xantheas SS (1994) J Chem Phys 100:7523–7534CrossRefGoogle Scholar
  36. 36.
    Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163CrossRefGoogle Scholar
  37. 37.
    Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  38. 38.
    Parr RG, Yang W (1994) Density-Functional Theory of Atoms and Molecules. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  40. 40.
    Fukui K (1970) J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  41. 41.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  42. 42.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  43. 43.
    Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha M, Murray J (2005) J Chem Sci 117:467–472CrossRefGoogle Scholar
  44. 44.
    Toro-Labbé A, Gutiérrez-Oliva S, Concha MC, Murray JS, Politzer P (2004) J Chem Phys 121:4570–4576CrossRefGoogle Scholar
  45. 45.
    Azofra LM, Alkorta I, Elguero J, Toro-Labbé A (2012) J Phys Chem A 116:8250–8259CrossRefGoogle Scholar
  46. 46.
    Azofra LM, Alkorta I, Toro-Labbé A, Elguero J (2013) Phys Chem Chem Phys 15:14026–14036CrossRefGoogle Scholar
  47. 47.
    Koopmans T (1934) Physica 1:104–113CrossRefGoogle Scholar
  48. 48.
    Echegaray E, Toro-Labbé A (2008) J Phys Chem A 112:11801–11807CrossRefGoogle Scholar
  49. 49.
    Giri S, Echegaray E, Ayers PW, Nuñez AS, Lund F, Toro-Labbé A (2012) J Phys Chem A 116:10015–10026CrossRefGoogle Scholar
  50. 50.
    Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:995–1003CrossRefGoogle Scholar
  51. 51.
    Azofra LM, Alkorta I, Scheiner S (2014) Phys Chem Chem Phys 16:18974–18981CrossRefGoogle Scholar
  52. 52.
    Mó O, Yáñez M, Elguero J (1992) J Chem Phys 97:6628–6638CrossRefGoogle Scholar
  53. 53.
    Reimers JR, Watts RO, Klein ML (1982) Chem Phys 64:95–114CrossRefGoogle Scholar
  54. 54.
    Lane JR (2012) J Chem Theory Comput 9:316–323CrossRefGoogle Scholar
  55. 55.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  56. 56.
    Alkorta I, Popelier PLA (2011) Carbohydr Res 346:2933–2939CrossRefGoogle Scholar
  57. 57.
    Azofra LM, Alkorta I, Elguero J, Popelier PLA (2012) Carbohydr Res 358:96–105CrossRefGoogle Scholar
  58. 58.
    Azofra LM, Alkorta I, Elguero J (2012) J Phys Org Chem 25:1286–1292CrossRefGoogle Scholar
  59. 59.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552CrossRefGoogle Scholar
  60. 60.
    Azofra LM, Scheiner S (2014) J Phys Chem A 118:3835–3845CrossRefGoogle Scholar
  61. 61.
    Cremer D, Kraka E (1984) Croat Chem Acta 57:1259–1281Google Scholar
  62. 62.
    Del Bene JE, Alkorta I, Elguero J (2014) J Phys Chem A 118:10144–10154CrossRefGoogle Scholar
  63. 63.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ibon Alkorta
    • 1
  • Luis Miguel Azofra
    • 1
  • José Elguero
    • 1
  1. 1.Instituto de Química MédicaCSICMadridSpain

Personalised recommendations