Study of electron transport in polybenzenoid chains covalently attached to gold atoms through unsaturated methylene linkers

  • Nicolás Ramos-Berdullas
  • Ana M. Graña
  • Marcos Mandado
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

It is well recognized that chemical properties such as aromaticity influence strongly the transport of electrons within a molecule. Since these properties are calculated from equilibrium wave functions, methods relying on equilibrium electronic distributions to determine the electron transport, such as those stemmed from the energy–time uncertainty relation, may be suitable to connect chemical concepts and electron transport. Here, we explore the relation of molecular conductance with the electric response and aromatic stabilization of molecular junctions formed with chains of polybenzenoid units attached to gold atoms through unsaturated methylene carbons. We have found that voltage dependence of conductance stems from the amount of electrons promoted by the electric potential from occupied to virtual molecular orbitals. We also show that aromaticity assists the electron transport when it arises from resonant polarized structures. Otherwise, aromaticity decreases electron transport as reported in previous theoretical and experimental works.

Keywords

Molecular conductors Electron transport Aromaticity Quantum chemistry 

References

  1. 1.
    Chen F, Tao NJ (2009) Acc Chem Res 42:429–438CrossRefGoogle Scholar
  2. 2.
    Schneebeli ST, Kamenetska M, Cheng Z, Skouta R, Friesner RA, Venkataraman L, Breslow R (2011) J Am Chem Soc 133:2136–2139CrossRefGoogle Scholar
  3. 3.
    Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L (2011) Nat Nanotechnol 6:353–357CrossRefGoogle Scholar
  4. 4.
    Chen W, Widawsky JR, Vazquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) J Am Chem Soc 133:17160–17163CrossRefGoogle Scholar
  5. 5.
    Emberly E, Kirczenow G (1999) Nanotechnology 10:285–289CrossRefGoogle Scholar
  6. 6.
    Yaliraki SN, Kemp M, Ratner MA (1999) J Am Chem Soc 121:3428–3434CrossRefGoogle Scholar
  7. 7.
    Yaliraki SN, Roitberg AE, Gonzalez C, Mujica V, Ratner MA (1999) J Chem Phys 111:6997–7002CrossRefGoogle Scholar
  8. 8.
    Choi HJ, Ihm J (1999) Phys Rev B 59:2267–2275CrossRefGoogle Scholar
  9. 9.
    Di VM, Pantelides ST, Lang ND (2000) Phys Rev Lett 84:979–982CrossRefGoogle Scholar
  10. 10.
    Derosa PA, Seminario JM (2001) J Phys Chem B 105:471–481CrossRefGoogle Scholar
  11. 11.
    Taylor J, Guo H, Wang J (2001) Phys Rev B 63:245407/1–245407/13Google Scholar
  12. 12.
    Xue Y, Datta S, Ratner MA (2002) Chem Phys 281:151–170CrossRefGoogle Scholar
  13. 13.
    Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401/1–165401/17CrossRefGoogle Scholar
  14. 14.
    Delaney P, Greer JC (2004) Phys Rev Lett 93:036805/1–036805/4Google Scholar
  15. 15.
    Kurth S, Stefanucci G, Almbladh CO, Rubio A, Gross EKU (2005) Phys Rev B 72:035308/1–035308/13CrossRefGoogle Scholar
  16. 16.
    Rocha AR, García-Suárez VM, Bailey S, Lambert C, Ferrer J, Sanvito S (2006) Phys Rev B 73:085414/1–085414/22CrossRefGoogle Scholar
  17. 17.
    Toher C, Sanvito S (2007) Phys Rev Lett 99:056801/1–056801/4CrossRefGoogle Scholar
  18. 18.
    Toher C, Sanvito S (2008) Phys Rev B 77:155402/1–155402/12CrossRefGoogle Scholar
  19. 19.
    Goyer F, Ernzerhof M, Zhuang M (2007) J Chem Phys 126:144104/1–144104/8CrossRefGoogle Scholar
  20. 20.
    Ortiz DO, Seminario JM (2007) J Chem Phys 127:111106/1–111106/3CrossRefGoogle Scholar
  21. 21.
    Landauer R (1957) IBM J Res Dev 1:223–231CrossRefGoogle Scholar
  22. 22.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207–6215CrossRefGoogle Scholar
  23. 23.
    Seminario JM (2007) J Phys B: At Mol Opt Phys 40:F275–F276CrossRefGoogle Scholar
  24. 24.
    Ramos-Berdullas N, Mandado M (2014) J Phys Chem A 118:3827–3834CrossRefGoogle Scholar
  25. 25.
    Szarek P, Suwannawong S, Doi K, Kawano S (2013) J Phys Chem C 117:10809–10817CrossRefGoogle Scholar
  26. 26.
    Fowler PW, Pickup BT, Todorova TZ (2011) Pure Appl Chem 83:1515–1528CrossRefGoogle Scholar
  27. 27.
    Morikawa T, Narita S, Klein DJ (2005) Chem Phys Lett 402:554–558CrossRefGoogle Scholar
  28. 28.
    Ramos-Berdullas N, Mandado M (2013) Chem Eur J 19:3646–3654CrossRefGoogle Scholar
  29. 29.
    Mandado M, Ramos-Berdullas N (2014) J Comput Chem 35:1261–1269CrossRefGoogle Scholar
  30. 30.
    Mitoraj M, Michalak A, Ziegler T (2009) J Chem Theor Comput 5:962–975CrossRefGoogle Scholar
  31. 31.
    Martin RL (2003) J Chem Phys 118:4775–4777CrossRefGoogle Scholar
  32. 32.
    Gaussian 09, Revision D01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc, Wallingford CTGoogle Scholar
  33. 33.
    Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706–718CrossRefGoogle Scholar
  34. 34.
    Mandado M, Gonzalez-Moa MJ, Mosquera RA (2007) J Comput Chem 28:127–136CrossRefGoogle Scholar
  35. 35.
    Mandado M, Gonzalez-Moa MJ, Mosquera RA (2007) J Comput Chem 28:1625–1633CrossRefGoogle Scholar
  36. 36.
    Chen X, Wang H, Wan H, Song K, Zhou G (2011) J Phys: Condens Matter 23:315304/1–315304/8Google Scholar
  37. 37.
    Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau P (2006) J Chem Theory Comput 2:1291–1297CrossRefGoogle Scholar
  38. 38.
    Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA (2010) Nat Chem 2:223–228CrossRefGoogle Scholar
  39. 39.
    Quinn JR, Foss FW, Venkataraman L, Hybertsen MS, Berlow R (2007) J Am Chem Soc 129:6714–6715CrossRefGoogle Scholar
  40. 40.
    Chen W, Li H, Widawsky JR, Appayee C, Venkataraman L, Breslow R (2014) J Am Chem Soc 136:918–920CrossRefGoogle Scholar
  41. 41.
    Datta S (1995) Electronic Transport in Mesoscopic Systems. In: Ahmed H, Pepper M, Broers A (eds) Cambridge studies in semiconductor physics and microelectronic engineering: 3. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nicolás Ramos-Berdullas
    • 1
  • Ana M. Graña
    • 1
  • Marcos Mandado
    • 1
  1. 1.Department of Physical ChemistryUniversity of VigoVigoSpain

Personalised recommendations