Theoretical Chemistry Accounts

, 134:1587 | Cite as

Is the structure of hydroxide dihydrate OH(H2O)2? An ab initio path integral molecular dynamics study

  • Yudai Ogata
  • Yukio Kawashima
  • Kaito Takahashi
  • Masanori Tachikawa
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

We carried out ab initio path integral molecular dynamics simulations at room temperature for OH(H2O)n (n = 1, 2) clusters to elucidate the ionic hydrogen bond structure with full thermal and nuclear quantum effects. We found that the hydrogen-bonded proton is located near the water molecule in the case of n = 2, while the proton is located at the center between hydroxide ion and the water molecule in the case of n = 1. Thus, the solvated hydroxide structure \({\text{HO}}{-}{\text{H}} \cdots{\text{OH}}\) is found in n = 2, while the proton sharing hydroxide structure \({\text{HO}} \cdots {\text{H}} \cdots {\text{OH}}\) is in n = 1. We found that the nature of hydrogen bonds significantly changes with the number of water molecules around the hydroxide. We also compared these results with those of F(H2O)n (n = 1, 2) clusters.

Keywords

Water cluster Hydroxide ion Nuclear quantum effect Path integral molecular dynamics Ionic hydrogen bond 

Notes

Acknowledgments

Financial support was provided by Grant-in-Aid for Scientific Research and for the priority area by Ministry of Education, Culture, Sports, Science, and Technology, Japan for YK and MT. KT thanks Academia Sinica, National Center for High Performance Computing of Taiwan and Ministry of Science and Technology (NSC100-2113-M-001-004-MY2, NSC 102-2113-M-001-012-MY3) of Taiwan for support.

References

  1. 1.
    Agmon N (2000) Mechanism of hydroxide mobility. Chem Phys Lett 319:247–252CrossRefGoogle Scholar
  2. 2.
    Tuckerman ME, Marx D, Parrinello M (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–929CrossRefGoogle Scholar
  3. 3.
    Robertson WH, Diken EG, Price A, Shin J-W, Johnson MA (2003) Spectroscopic Determination of the OH Solvation Shell in the OH(H2O)n clusters. Science 299:1367–1372CrossRefGoogle Scholar
  4. 4.
    Ludwig R (2003) New insight into the transport mechanism of hydrated hydroxide ions in water. Angew Chem Int Ed 42:258–260CrossRefGoogle Scholar
  5. 5.
    Suzuki K, Tachikawa M, Shiga M (2010) Efficient ab initio path integral hybrid Monte Carlo based on the fourth-order Trotter expansion: application to fluoride ion-water cluster. J Chem Phys 132:144108CrossRefGoogle Scholar
  6. 6.
    Kawashima Y, Suzuki K, Tachikawa M (2013) Ab initio Path integral simulations for the fluoride ion-water clusters: competitive nuclear quantum effect between—water and water-water hydrogen bonds. J Phys Chem A 117:5205–5210CrossRefGoogle Scholar
  7. 7.
    Choi J-H, Kuwata KT, Cao Y-B, Okumura M (1998) Vibrational spectroscopy of the Cl(H2O)n anion clusters, n = 1–5. J Phys Chem A 102:503–507CrossRefGoogle Scholar
  8. 8.
    Wang Q, Suzuki K, Nagashima U, Tachikawa M, Yan S (2013) Path integral molecular dynamics study of nuclear quantum effect on small chloride water clusters of Cl(H2O)1–4. Chem Phys 419:229–236CrossRefGoogle Scholar
  9. 9.
    Xantheas SS (1995) Theoretical study of hydroxide ion-water clusters. J Am Chem Soc 117:10373–10380CrossRefGoogle Scholar
  10. 10.
    Baik J, Kim J, Majumdar D, Kim KS (1999) Structures, energetics, and spectra of fluoride–water clusters F(H2O)n, n = 1–6: Ab initio study. J Chem Phys 110:9116–9127CrossRefGoogle Scholar
  11. 11.
    Chandhuri C, Wang Y-S, Jiang JC, Lee YT, Chang H-C, Niedner-Schatteburg G (2001) Infrared spectra and isomeric structures of hydroxide ion-water clusters OH(H2O)1–5: a comparison with H3O+(H2O)1–5. Mol Simul 99:1161–1173Google Scholar
  12. 12.
    Chaban GM, Xantheas SS, Gerber RB (2003) Anharmonic vibratinal spectroscopy of the F(H2O)n complexes, n = 1, 2. J Phys Chem A 107:4952–4956CrossRefGoogle Scholar
  13. 13.
    McCoy AB, Huang X, Carter S, Bowman JM (2005) Quantum studies of the vibrations in H3O2 and D3O2 . J Chem Phys 123:064317CrossRefGoogle Scholar
  14. 14.
    Samson CCM, Klopper W (2002) Ab initio calculation of proton barrier and binding energy of the (H2O)OH complex. J Mol Struc 586:201–208CrossRefGoogle Scholar
  15. 15.
    Roscioli JR, Diken EG, Johnson MA, Horvath S, McCoy AB (2006) Prying apart a water molecule with anionic H-bonding: a comparative spectroscopic study of the X − H2O(X = OH, O, F, Cl, and Br) binary complexes in the 600–3800 cm–region. J Phys Chem A 110:4943–4952CrossRefGoogle Scholar
  16. 16.
    Morita M, Takahashi K (2013) Multidimensional local mode calculations for the vibrational spectra of OH−(H2O)2 and OH−(H2O)2·Ar. Phys Chem Chem Phys 15:14973–14985CrossRefGoogle Scholar
  17. 17.
    Tuckerman ME, Marx D, Klein LM, Parrinello M (1997) On the quantum nature of the shared proton in hydrogen bonds. Science 275:817–820CrossRefGoogle Scholar
  18. 18.
    Tachikawa M, Shiga M (2005) Geometrical H/D Isotope effects on hydrogen bonds in charged water clusters. J Am Chem Soc 127:11908–11909CrossRefGoogle Scholar
  19. 19.
    Suzuki K, Shiga M, Tachikawa M (2008) Temperature and isotope effects on water cluster ions with path integral molecular dynamics based on the fourth order Trotter expansion. J Chem Phys 129:144310CrossRefGoogle Scholar
  20. 20.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635CrossRefGoogle Scholar
  21. 21.
    Kawashima Y, Tachikawa M (2013) Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: an ab initio path integral molecular dynamics study. Chem Phys Lett 571:23–27CrossRefGoogle Scholar
  22. 22.
    Kawashima Y, Tachikawa M (2014) Ab initio path integral molecular dynamics study of the nuclear quantum effect on out-of-plane ring deformation of hydrogen maleate anion. J Chem Theory Comput 10:153–163CrossRefGoogle Scholar
  23. 23.
    Ogata Y, Daido M, Kawashima Y, Tachikawa M (2013) Nuclear quantum effects on protonated lysine with asymmetric low barrier hydrogen bond: an ab initio path integral molecular dynamics study. RSC Adv 3:25252–25257CrossRefGoogle Scholar
  24. 24.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  25. 25.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  26. 26.
    Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518CrossRefGoogle Scholar
  27. 27.
    Feyereisen MW, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363CrossRefGoogle Scholar
  28. 28.
    Ahlrichs R, Bär H, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169CrossRefGoogle Scholar
  29. 29.
    Kaledin M, Wood CA (2010) Ab initio studies of structural and vibrational properties of protonated water cluster H7O3 + and its deuterium isotopologues: an application of driven molecular dynamics. J Chem Theory Comput 6:2525–2535CrossRefGoogle Scholar
  30. 30.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2007) Hydrogen bonding in protonated water clusters: an atoms-in-molecules perspective. J Phys Chem A 111:13287–13290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yudai Ogata
    • 1
  • Yukio Kawashima
    • 2
  • Kaito Takahashi
    • 3
  • Masanori Tachikawa
    • 1
  1. 1.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
  2. 2.RIKEN Advanced Institute for Computational ScienceKobeJapan
  3. 3.Institute of Atomic and Molecular SciencesAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations