Theoretical Chemistry Accounts

, 133:1586 | Cite as

Noncovalent interactions in dimers and trimers of SO3 and CO

  • Luis Miguel Azofra
  • Ibon Alkorta
  • Steve Scheiner
Regular Article
Part of the following topical collections:
  1. 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014)

Abstract

The SO3:CO heterodimer has been found by ab initio calculations to form a complex in which the C lone pair of CO interacts with the π*(SO) antibond via the π-hole lying directly above the S atom of SO3. The binding energy of this complex is 4.3 kcal/mol, with Coulombic attraction as its main component. There is also a secondary minimum, with half that strength, wherein the CO molecule is rotated so that it is its O atom that interacts with SO3. The most stable SO3:(CO)2 heterotrimer has the two CO molecules approaching the S atom from above and below the SO3 plane with the C atoms of the CO interacting with the S of the SO3. A strong chalcogen bond between SO3 molecules is the dominant feature of the (SO3)2:CO trimer, supplemented by a S···C chalcogen bond in the SO3:CO dimer.

Keywords

Chalcogen bonds S···C bonds S···O bonds π-Hole 

References

  1. 1.
    Hobza P, Müller-Dethlefs K (2009) Non-covalent interactions. The Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond. Recent developments in theory and experiments. North-Holland Publishing Co., AmsterdamGoogle Scholar
  3. 3.
    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, DordrechtCrossRefGoogle Scholar
  5. 5.
    Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, OxfordCrossRefGoogle Scholar
  6. 6.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  7. 7.
    Metrangolo P, Resnati G (2008) Science 321:918–919CrossRefGoogle Scholar
  8. 8.
    Zierkiewicz W, Michalska D, Zeegers-Huyskens T (2010) Phys Chem Chem Phys 12:13681–13691CrossRefGoogle Scholar
  9. 9.
    Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  11. 11.
    Solimannejad M, Malekani M, Alkorta I (2013) J Phys Chem A 117:5551–5557CrossRefGoogle Scholar
  12. 12.
    Tschirschwitz S, Lonnecke P, Hey-Hawkins E (2007) Dalton Trans 14:1377–1382Google Scholar
  13. 13.
    Bühl M, Kilian P, Woollins JD (2011) ChemPhysChem 12:2405–2408CrossRefGoogle Scholar
  14. 14.
    Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  15. 15.
    Scheiner S (2011) J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  16. 16.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  17. 17.
    Adhikari U, Scheiner S (2012) Chem Phys Lett 536:30–33CrossRefGoogle Scholar
  18. 18.
    Scheiner S (2012) Acc Chem Res 46:280–288CrossRefGoogle Scholar
  19. 19.
    Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:4981–4987CrossRefGoogle Scholar
  20. 20.
    Azofra LM, Alkorta I, Elguero J (2014) ChemPhysChem. doi:10.1002/cphc.201402086
  21. 21.
    Alkorta I, Rozas I, Elguero J (2001) J Phys Chem A 105:743–749CrossRefGoogle Scholar
  22. 22.
    Azofra LM, Altarsha M, Ruiz-López MF, Ingrosso F (2013) Theor Chem Acc 132:1326CrossRefGoogle Scholar
  23. 23.
    Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321CrossRefGoogle Scholar
  24. 24.
    Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834CrossRefGoogle Scholar
  25. 25.
    Minyaev RM, Minkin VI (1998) Can J Chem 76:776–788CrossRefGoogle Scholar
  26. 26.
    Rosenfield RE, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  27. 27.
    Burling FT, Goldstein BM (1992) J Am Chem Soc 114:2313–2320CrossRefGoogle Scholar
  28. 28.
    Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620CrossRefGoogle Scholar
  29. 29.
    Werz DB, Gleiter R, Rominger F (2002) J Am Chem Soc 124:10638–10639CrossRefGoogle Scholar
  30. 30.
    Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674CrossRefGoogle Scholar
  31. 31.
    Sánchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552CrossRefGoogle Scholar
  32. 32.
    Jabłoński M (2012) J Phys Chem A 116:3753–3764CrossRefGoogle Scholar
  33. 33.
    Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) ChemPhysChem 13:496–503CrossRefGoogle Scholar
  34. 34.
    Adhikari U, Scheiner S (2014) J Phys Chem A 118:3183–3192CrossRefGoogle Scholar
  35. 35.
    Azofra LM, Scheiner S (2014) J Phys Chem A 118:3835–3845CrossRefGoogle Scholar
  36. 36.
    Azofra LM, Alkorta I, Scheiner S (2014) J Chem Phys 140:244311CrossRefGoogle Scholar
  37. 37.
    Azofra LM, Alkorta I, Scheiner S (2014) Phys Chem Chem Phys 16:18974–18981CrossRefGoogle Scholar
  38. 38.
    Bauzá A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201–5210CrossRefGoogle Scholar
  39. 39.
    Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G (2014) Cryst Growth Des 14:2697–2702CrossRefGoogle Scholar
  40. 40.
    Goettel JT, Chaudhary P, Hazendonk P, Mercier HPA, Gerken M (2012) Chem Commun 48:9120–9122CrossRefGoogle Scholar
  41. 41.
    Murray J, Lane P, Clark T, Riley K, Politzer P (2012) J Mol Model 18:541–548CrossRefGoogle Scholar
  42. 42.
    Azofra LM, Scheiner S (2014) J Chem Phys 140:034302CrossRefGoogle Scholar
  43. 43.
    Azofra LM, Scheiner S (2014) Phys Chem Chem Phys 16:5142–5149CrossRefGoogle Scholar
  44. 44.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  45. 45.
    Dunning THJ (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  46. 46.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, GAUSSIAN09, Revision D.01, Wallingford CT, 2009Google Scholar
  49. 49.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  50. 50.
    Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A, MOLPRO 2012.1, 2012Google Scholar
  51. 51.
    Xantheas SS, Dunning TH (1993) J Chem Phys 99:8774–8792CrossRefGoogle Scholar
  52. 52.
    Xantheas SS (1994) J Chem Phys 100:7523–7534CrossRefGoogle Scholar
  53. 53.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  54. 54.
    Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, HarlowGoogle Scholar
  55. 55.
    Weinhold F, Landis CR (2005) Valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge Press, CambridgeCrossRefGoogle Scholar
  56. 56.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  57. 57.
    Keith TA, AIMAll (Version 13.11.04), Overland Park KS, USA, 2013Google Scholar
  58. 58.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F, NBO 6.0, Madison, USA, 2013Google Scholar
  59. 59.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  60. 60.
    Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) J Mol Model 16:1679–1691CrossRefGoogle Scholar
  61. 61.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  62. 62.
    Chałasiński G, Szczȩśniak MM (2000) Chem Rev 100:4227–4252CrossRefGoogle Scholar
  63. 63.
    Muenter JS (1975) J Mol Spectrosc 55:490–491Google Scholar
  64. 64.
    Reimers JR, Watts RO, Klein ML (1982) Chem Phys 64:95–114CrossRefGoogle Scholar
  65. 65.
    Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang L-S (2011) J Chem Phys 134:224304CrossRefGoogle Scholar
  66. 66.
    van der Pol A, van der Avoird A, Wormer PES (1990) J Chem Phys 92:7498–7504CrossRefGoogle Scholar
  67. 67.
    Brookes MD, McKellar ARW (1999) J Chem Phys 111:7321–7328CrossRefGoogle Scholar
  68. 68.
    Vissers GWM, Wormer PES, van der Avoird A (2003) Phys Chem Chem Phys 5:4767–4771CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luis Miguel Azofra
    • 1
  • Ibon Alkorta
    • 1
  • Steve Scheiner
    • 2
  1. 1.Instituto de Química MédicaCSICMadridSpain
  2. 2.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations