Theoretical Chemistry Accounts

, 133:1551 | Cite as

First-principles investigations on the anisotropic charge transport in 4,4′-bis((E)-2-(naphthalen-2-yl)vinyl)-1,1′-biphenyl single crystal

  • Lili Lin
  • Xin Li
  • Guangjun Tian
  • Hua Geng
  • Zhigang ShuaiEmail author
  • Yi Luo
Regular Article
Part of the following topical collections:
  1. Yan Festschrift Collection


We applied the master equation method to investigate the anisotropic transport property of the 4,4′-bis((E)-2-(naphthalen-2-yl)vinyl)-1,1′-biphenyl molecular crystal based on first-principles calculation. It is found that the hole mobility has the largest value along the [100] direction, while electrons have the best transport property along the [010] direction. The anisotropic transport property was found to have close relationship with the charge transfer integral which is determined by the molecular stacking network in the crystals as well as the intermolecular frontier orbital overlap. In addition, the effect of the charge carrier density and the electronic field on the charge transport was also studied, and little effect was found except that the density is larger than 0.01 and the electronic field is increased to 1.0 × 106 V/cm. The kinetic Monte Carlo simulation method has also been used to study the anisotropic charge transport property, and consistent results were obtained as with the master equation method.


Organic electronics Carrier mobility Charge transfer Master equation Crystal anisotropy 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 21290191, 11247307, 11304172, and 91333202) and the Ministry of Science and Technology through 973 program (Grant Nos. 2010CB923300, 2011CB932304, 2011CB808405, 2013CB933503), and the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine. The Swedish National Infrastructure for Computing (SNIC) is acknowledged for computational time. Great thanks to Professor Shiwei Yin, Dr Weijie Hua, and Dr. Sai Duan for helpful discussion.


  1. 1.
    Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245CrossRefGoogle Scholar
  2. 2.
    Meng Q, Hu W (2012) Recent progress of n-type organic semiconducting small molecules for organic field-effect transistors. Phys Chem Chem Phys 14(41):14152CrossRefGoogle Scholar
  3. 3.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267CrossRefGoogle Scholar
  4. 4.
    Sakanoue T, Sirringhaus H (2010) Band-like temperature dependence of mobility in a solution-processed organic semiconductors. Nat Mater 9:736–740CrossRefGoogle Scholar
  5. 5.
    Geng H, Peng Q, Wang LJ, Li HJ, Liao Y, Ma ZY, Shuai Z (2012) Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model. Adv Mater 24:3568–3572CrossRefGoogle Scholar
  6. 6.
    Jiang YQ, Xu HH, Zhao N, Peng Q, Shuai Z (2014) Spectral signature of intrachain and interchain polarons in donor-acceptor copolymers. Acta Chim Sinica 72(2):201–207CrossRefGoogle Scholar
  7. 7.
    Shuai Z, Wang L, Li Q (2011) Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level. Adv Mater 23(9):1145–1153CrossRefGoogle Scholar
  8. 8.
    Troisi A (2011) Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem Soc Rev 40(5):2347–2358CrossRefGoogle Scholar
  9. 9.
    Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303(5664):1644–1646CrossRefGoogle Scholar
  10. 10.
    Zeis R, Besnard C, Siegrist T, Schlockermann C, Chi X, Kloc C (2006) Field effect studies on rubrene and impurities of rubrene. Chem Mater 18(2):244–248CrossRefGoogle Scholar
  11. 11.
    Lee JY, Roth S, Park YW (2006) Anisotropic field effect mobility in single crystal pentacene. Appl Phys Lett 88(25):252106–252106–3CrossRefGoogle Scholar
  12. 12.
    Mannsfeld SCB, Locklin J, Reese C, Roberts ME, Lovinger AJ, Bao Z (2007) Probing the anisotropic field-effect mobility of solution-deposited dicyclohexyl-α-quaterthiophene single crystals. Adv Funct Mater 17(10):1617–1622CrossRefGoogle Scholar
  13. 13.
    Reese C, Bao Z (2007) High-resolution measurement of the anisotropy of charge transport in single crystals. Adv Mater 19(24):4535–4538CrossRefGoogle Scholar
  14. 14.
    Xia Y, Kalihari V, Frisbie CD, Oh NK, Rogers JA (2007) Tetracene air-gap single-crystal field-effect transistors. Appl Phys Lett 90(16):162106–162106CrossRefGoogle Scholar
  15. 15.
    He T, Zhang X, Jia J, Li Y, Tao X (2012) Three-dimensional charge transport in organic semiconductor single crystals. Adv Mater 24(16):2171–2175CrossRefGoogle Scholar
  16. 16.
    Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett 94(20):206601CrossRefGoogle Scholar
  17. 17.
    Hush NS (1968) Homogeneous and heterogeneous optical and thermal electron transfer. Electrochim Acta 13(5):1005–1023CrossRefGoogle Scholar
  18. 18.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599–610CrossRefGoogle Scholar
  19. 19.
    Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39(2):423–434CrossRefGoogle Scholar
  20. 20.
    Paulson BP, Curtiss LA, Bal B, Closs GL, Miller JR (1996) Investigation of through-bond coupling dependence on spacer structure. J Am Chem Soc 118(2):378–387CrossRefGoogle Scholar
  21. 21.
    Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J Phys Chem B 106(32):7791–7795CrossRefGoogle Scholar
  22. 22.
    Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA (2003) Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys 119(18):9809–9817CrossRefGoogle Scholar
  23. 23.
    Lemaur V, da Silva Filho DA, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Brédas J-L, Cornil J (2004) Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure−property relationships. J Am Chem Soc 126(10):3271–3279CrossRefGoogle Scholar
  24. 24.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5004CrossRefGoogle Scholar
  25. 25.
    Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas J-L (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128(30):9882–9886CrossRefGoogle Scholar
  26. 26.
    Shuai Z, Geng H, Xu W, Liao Y, André JM (2014) From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem Soc Rev 43:2662–2679CrossRefGoogle Scholar
  27. 27.
    Kwon O, Coropceanu V, Gruhn NE, Durivage JC, Laquindanum JG, Katz HE, Cornil J, Brédas JL (2004) Characterization of the molecular parameters determining charge transport in anthradithiophene. J Chem Phys 120(17):8186–8194CrossRefGoogle Scholar
  28. 28.
    Tian GJ, Duan S, Hua WJ, Luo Y (2012) DynaVib Version 1.0. Royal Institute of Technology, SwedenGoogle Scholar
  29. 29.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, et al Gaussian 09, revision a. 02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  30. 30.
    Shuai Z, Xu W, Peng Q, Geng H (2013) From electronic excited state theory to the property predictions of the organic optoelectronic materials. Sci China Chem 56(9):1227–1284Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lili Lin
    • 1
    • 2
  • Xin Li
    • 2
  • Guangjun Tian
    • 2
  • Hua Geng
    • 3
  • Zhigang Shuai
    • 4
    Email author
  • Yi Luo
    • 2
    • 5
  1. 1.College of Physics and ElectronicsShandong Normal UniversityJinanChina
  2. 2.Department of Theoretical Chemistry and Biology, School of BiotechnologyRoyal Institute of TechnologyStockholmSweden
  3. 3.Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Department of ChemistryTsinghua UniversityBeijingChina
  5. 5.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations