Theoretical Chemistry Accounts

, 133:1528 | Cite as

Revisiting roaming trajectories in ketene isomerization at higher dimensionality

Regular Article
Part of the following topical collections:
  1. Ezra Festschrift Collection


Roaming dynamics have been observed in a three-dimensional model of the ketene isomerization reaction. The roaming trajectories sample the region between the outer potential barriers closest to the respective ketene isomers and involve turning points along the reaction coordinate in a polar representation. These roaming trajectories avoid the intrinsic reaction coordinate and the intermediates to which it is associated. Thus, one-dimensional transition state theory (TST) is generally insufficient as has been confirmed through an analysis of the reactive flux along the dividing surface (DS). A global representation of the DS, however, leads to accurate TST rate constants. The exact and TST microcanonical rates of isomerization have been obtained for the three-dimensional model and compare well to experiment. The global DS is therefore particularly important for obtaining rates in reactions that exhibit roaming. This work thus confirms the findings of our previous two-dimensional treatment of ketene isomerization (Ulusoy et al. in J. Phys. Chem. A 117:7553–7560, 2013).


Transition state theory Roaming Reaction dynamics Classical trajectories Reaction rate Theory 



It a pleasure to publish this article in honor of Greg Ezra. This work has been partially supported by the Air Force Office of Scientific Research through Grant No. FA9550-12-1-0483. I. U. acknowledges the Alexander von Humboldt Foundation, Germany, for support through a Feodor Lynen Fellowship. This work used the HPC resources (Stampede) at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin through XSEDE allocation under award No. TG-CTS090079. We are also grateful to Prof. J. Daniel Gezelter for discussions [36] about the energetics and masses associated with the ketene surface.


  1. 1.
    Pechukas P (1981) Transition state theory. Annu Rev Phys Chem 32:159. doi:10.1146/annurev.pc.32.100181.001111 CrossRefGoogle Scholar
  2. 2.
    Bartsch T, Hernandez R, Uzer T (2005) Transition state in a noisy environment. Phys Rev Lett 95:058301. doi:10.1103/PhysRevLett.95.058301 CrossRefGoogle Scholar
  3. 3.
    Bartsch T, Uzer T, Hernandez R (2005) Stochastic transition states: reaction geometry amidst noise. J Chem Phys 123:204102. doi:10.1063/1.2109827 CrossRefGoogle Scholar
  4. 4.
    Hernandez R, Bartsch T, Uzer T (2010) Transition state theory in liquids beyond planar dividing surfaces. Chem Phys 370:270. doi:10.1016/j.chemphys.2010.01.016 CrossRefGoogle Scholar
  5. 5.
    Keck JC (1967) Variational theory of reaction rates. Adv Chem Phys 13:85Google Scholar
  6. 6.
    Pollak E, Talkner P (2005) Reaction rate theory: what it was, where it is today, and where is it going? Chaos 15:026116CrossRefGoogle Scholar
  7. 7.
    Uzer T, Jaffé C, Palacían J, Yanguas P, Wiggins S (2002) The geometry of reaction dynamics. Nonlinearity 15:957CrossRefGoogle Scholar
  8. 8.
    Pechukas P, McLafferty FJ (1973) On transition state theory and the classical mechanics of collinear collisions. J Chem Phys 58:1622CrossRefGoogle Scholar
  9. 9.
    Ezra GS, Wiggins S (2009) Phase-space geometry and reaction dynamics near index 2 saddles. J Phys A: Math Theor 42:205101CrossRefGoogle Scholar
  10. 10.
    Collins P, Ezra GS, Wiggins S (2011) Index k saddles and dividing surfaces in phase space with applications to isomerization dynamics. J Chem Phys 134:244105CrossRefGoogle Scholar
  11. 11.
    Sun L, Song K, Hase WL (2002) A s\(_{N2}\) reaction that avoids its deep potential energy minimum. Science 296:875. doi: 10.1126/science.1068053 CrossRefGoogle Scholar
  12. 12.
    Lourderaj U, Hase WL (2009) Theoretical and computational studies of non-rrkm unimolecular dynamics. J Phys Chem A 113:2236. doi:10.1021/jp806659f CrossRefGoogle Scholar
  13. 13.
    Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG, Zhang X, Rheinecker JL, Harding LB, Bowman JM (2004) The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158. doi:10.1126/science.1104386 CrossRefGoogle Scholar
  14. 14.
    Heazlewood BR, Jordan MJT, Kable SH, Selby TM, Osborn DL, Shepler BC, Braams BJ, Bowman JM (2008) Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. Proc Natl Acad Sci USA 105(35):12719. doi:10.1073/pnas.0802769105 CrossRefGoogle Scholar
  15. 15.
    Grubb MP, Warter ML, Xiao H, Maeda S, Morokuma K, North SW (2012) No straight path: Roaming in both ground- and excited-state photolytic channels of NO\(_{3}\) \(\rightarrow\) NO + O\(_2\). Science 335:1075. doi: 10.1126/science.1216911 CrossRefGoogle Scholar
  16. 16.
    Shepler BC, Han Y, Bowman JM (2011) Are roaming and conventional saddle points for H\(_2\)CO and CH\(_3\)CHO dissociation to molecular products isolated from each other? J Phys Chem Lett 2:834. doi: 10.1021/jz2002138 CrossRefGoogle Scholar
  17. 17.
    Harding LB, Klippenstein SJ, Jasper AW (2012) Separability of tight and roaming pathways to molecular decomposition. J Phys Chem A 116:6967. doi:10.1021/jp303581k CrossRefGoogle Scholar
  18. 18.
    Klippenstein SJ, Georgievskii Y, Harding LB (2011) Statistical theory for the kinetics and dynamics of roaming reactions. J Phys Chem A 115:14370. doi:10.1021/jp208347j CrossRefGoogle Scholar
  19. 19.
    Bowman JM (2014) Roaming. Mol Phys doi:10.1080/00268976.2014.897395
  20. 20.
    Maugière FAL, Collins P, Ezra G, Farantos SC, Wiggins S (2014) Multiple transition states and roaming in ion-molecule reactions: a phase space perspective. Chem Phys Lett 592:282. doi:10.1016/j.cplett.2013.12.051 CrossRefGoogle Scholar
  21. 21.
    Maugière FAL, Collins P, Ezra G, Farantos SC, Wiggins S (2014) Roaming dynamics in ketene isomerization. Theor Chem Acc 133:1507. doi:10.1007/s00214-014-1507-4
  22. 22.
    Maugière FAL, Collins P, Ezra G, Farantos SC, Wiggins S (2014) Roaming dynamics in ion-molecule reactions: phase space reaction pathways and geometrical interpretation. J Chem Phys 140:134112. doi:10.1063/1.4870060 CrossRefGoogle Scholar
  23. 23.
    Ulusoy IS, Stanton JF, Hernandez R (2013) Effects of roaming trajectories on the transition state theory rates of a reduced-dimensional model of ketene isomerization. J Phys Chem A 117:7553. doi:10.1021/jp402322h CrossRefGoogle Scholar
  24. 24.
    Ulusoy IS, Stanton JF, Hernandez R (2013) Correction to ‘effects of roaming trajectories on the transition state theory rates of a reduced-dimensional model of ketene isomerization’. J Phys Chem A 117:10567. doi:10.1021/jp408997z CrossRefGoogle Scholar
  25. 25.
    Gezelter JD, Miller WH (1995) Resonant features in the energy dependence of the rate of ketene isomerization. J Chem Phys 103:7868. doi:10.1063/1.470204 CrossRefGoogle Scholar
  26. 26.
    Miller WH (1998) Direct and correct calculation of canonical and microcanonical rate constants for chemical reactions. J Phys Chem A 102:793CrossRefGoogle Scholar
  27. 27.
    Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willetts A (1990) Ab initio calculation of anharmonic constants for a transition state, with application to semiclassical transition state tunneling probabilities. Chem Phys Lett 172:62. doi:10.1016/0009-2614(92)85491-R CrossRefGoogle Scholar
  28. 28.
    Kim SK, Lovejoy ER, Moore CB (1995) Transition state vibrational level thresholds for the dissociation of triplet ketene. J Chem Phys 102(8):3202. doi:10.1063/1.468631 CrossRefGoogle Scholar
  29. 29.
    Lovejoy ER, Kim SK, Moore CB (1992) Observation of transition-state vibrational thresholds in the rate of dissociation of ketene. Science 256(5063):1541. doi:10.1126/science.256.5063.1541 CrossRefGoogle Scholar
  30. 30.
    Hernandez R (1994) A combined use of perturbation theory and diagonalization: application to bound energy levels and semiclassical rate theory. J Chem Phys 101:9534. doi:10.1063/1.467985 CrossRefGoogle Scholar
  31. 31.
    Whitten GZ, Rabinovitch BS (1963) Accurate and facile approximation for vibrational energy-level sums. J Chem Phys 38(10):2466. doi:10.1063/1.1733526 CrossRefGoogle Scholar
  32. 32.
    Whitten GZ, Rabinovitch BS (1964) Approximation for rotation–vibration energy level sums. J Chem Phys 41(6):1883. doi:10.1063/1.1726175 CrossRefGoogle Scholar
  33. 33.
    Tardy DC, Rabinovitch BS, Whitten GZ (1968) Vibration-rotation energy-level density calculations. J Chem Phys 48(3):1427. doi:10.1063/1.1668840 CrossRefGoogle Scholar
  34. 34.
    Scott AP, Nobes RH, Schaefer HF III, Radom L (1994) The Wolff rearrangement: the relevant portion of the oxirene-ketene potential energy hypersurface. J Am Chem Soc 116(22):10159. doi:10.1021/ja00101a039 CrossRefGoogle Scholar
  35. 35.
    Vacek G, Garlbraith JM, Yamaguchi Y III (1994) Oxirene: to be or not to be? J Phys Chem 98:8660CrossRefGoogle Scholar
  36. 36.
    Gezelter JD (2014) (private communication)Google Scholar
  37. 37.
    Lovejoy ER, Moore CB (1993) Structures in the energy dependence of the rate constant for ketene isomerization. J Chem Phys 98(10):7846. doi:10.1063/1.464592 CrossRefGoogle Scholar
  38. 38.
    Truhlar DG, Garrett BC (1984) Variational transition state theory. Annu Rev Phys Chem 35:159. doi:10.1146/annurev.pc.35.100184.001111 CrossRefGoogle Scholar
  39. 39.
    De Leon N, Mehta MA, Topper RQ (1991) Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory. J Chem Phys 94(12):8310CrossRefGoogle Scholar
  40. 40.
    Hernandez R, Miller WH (1993) Semiclassical transition state theory. A new perspective. Chem Phys Lett 214:129. doi:10.1016/0009-2614(93)90071-8 CrossRefGoogle Scholar
  41. 41.
    Uzer T, Jaffé C, Palacián J, Yanguas P, Wiggins S (2002) The geometry of reaction dynamics. Nonlinearity 15(4):957. doi:10.1088/0951-7715/15/4/301 CrossRefGoogle Scholar
  42. 42.
    Komatsuzaki T, Berry RS (2002) Chemical reaction dynamics: many-body chaos and regularity. Adv Chem Phys 123:79Google Scholar
  43. 43.
    Waalkens H, Wiggins S (2004) Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed. J Phys A 37(35):L435CrossRefGoogle Scholar
  44. 44.
    Li CB, Shoujiguchi A, Toda M, Komatsuzaki T (2006) Definability of no-return transition states in the high-energy regime above the reaction threshold. Phys Rev Lett 97(2):028302CrossRefGoogle Scholar
  45. 45.
    Çiftçi U, Waalkens H (2013) Reaction dynamics through kinetic transition states. Phys Rev Lett 110:233201. doi:10.1103/PhysRevLett.110.233201 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Computational Molecular Science and Technology, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations