Advertisement

Estimating hydrogen bond energies: comparison of methods

  • Ahmed T. Ayoub
  • Jack Tuszynski
  • Mariusz KlobukowskiEmail author
Regular Article

Abstract

Hydrogen bonds are among the most important non-bonded interactions found in molecules. Different methods of estimating the strength of hydrogen bonds have been proposed to date. In this work, we present a comparison between methods of estimating hydrogen bond energies that are based on several electron density descriptors based on the quantum theory of atoms in molecules, the natural bond orbital theory, and Mulliken population analysis. The results indicate that the most powerful approach is based on the quantum theory of atoms in molecules, followed by the one employing the natural bond orbital theory. The Mulliken population analysis performed very poorly. The effect of including dispersion correction was also studied. Parameters for predicting hydrogen bond energies are presented.

Keywords

Hydrogen bonds Atoms in molecules Population analysis 

Notes

Acknowledgments

M.K. thanks the Natural Sciences and Engineering Research Council (NSERC) for continuing support. J.T. appreciates the support of the Allard Foundation, NSERC, and the Canadian Breast Cancer Foundation. This research has been enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada as well as the PharmaMatrix Cluster.

Supplementary material

214_2014_1520_MOESM1_ESM.pdf (93 kb)
Tables showing the hydrogen bond energies as well as the values of the different descriptors for all hydrogen-bonded systems are shown in Supplementary Material. The coordinates of all the minimized structures are shown as well. (pdf 93 KB)

References

  1. 1.
    Arunan E, Desiraju GR, Klein Ra, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83(8):1637Google Scholar
  2. 2.
    Arunan E, Desiraju GR, Klein Ra, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83(8):1619Google Scholar
  3. 3.
    Desiraju GR (2002) Acc Chem Res 35(7):565CrossRefGoogle Scholar
  4. 4.
    Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW (2004) Nature 430(6995):101CrossRefGoogle Scholar
  5. 5.
    Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103(45):16623CrossRefGoogle Scholar
  6. 6.
    Hellgren M, Kaiser C, Haij S, Norberg Å, Höög JO (2007) Cell Mol Life Sci 64(23):3129CrossRefGoogle Scholar
  7. 7.
    Davidson ER (1967) J Chem Phys 46(9):3320Google Scholar
  8. 8.
    Roby KR (1974) Mol Phys 27(1):81CrossRefGoogle Scholar
  9. 9.
    Ehrhardt C, Ahlrichs R (1985) Theor Chim Acta 68(3):231CrossRefGoogle Scholar
  10. 10.
    Reiher M, Sellmann D, Hess BA (2001) Theor Chem Acc 106(6):379CrossRefGoogle Scholar
  11. 11.
    Thar J, Kirchner B (2006) J Phys Chem A 110(12):4229Google Scholar
  12. 12.
    Schmidt M, Zahn S, Carella M, Ohlenschläger O, Görlach M, Kothe E, Weston J (2008) ChemBioChem 9(13):2135CrossRefGoogle Scholar
  13. 13.
    Schenk S, Le Guennic B, Kirchner B, Reiher M (2008) Inorg Chem 47(9):3634CrossRefGoogle Scholar
  14. 14.
    Grabowski SJ (2001) J Phys Chem A 105(47):10739Google Scholar
  15. 15.
    Gora RW, Grabowski SJ, Leszczynski J (2005) J Phys Chem A 109(29):6397Google Scholar
  16. 16.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2005) J Phys Chem A 109(5):843Google Scholar
  17. 17.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110(10):3349Google Scholar
  18. 18.
    Gatti C, Saunders VR, Roetti C (1994) J Chem Phys 101(12):10686Google Scholar
  19. 19.
    Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Bader RFW (1991) Chem Rev 91(5):893CrossRefGoogle Scholar
  21. 21.
    Glendening ED, Landis CR, Weinhold F (2012) Wiley Interdiscip Rev Comput Mol Sci 2(1):1Google Scholar
  22. 22.
    Mulliken RS (1955) J Chem Phys 23(10):1833Google Scholar
  23. 23.
    Grabowski S (2000) J Mol Struct 553(1–3):151CrossRefGoogle Scholar
  24. 24.
    Alkorta I, Elguero J (1998) Chem Soc Rev 27:163CrossRefGoogle Scholar
  25. 25.
    Wiberg K (1968) Tetrahedron 24(3):1083CrossRefGoogle Scholar
  26. 26.
    Reed AE, Weinhold F (1983) J Chem Phys 78(6):4066Google Scholar
  27. 27.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735Google Scholar
  28. 28.
    Scheiner S (2007) Calculating the properties of hydrogen bonds by ab initio methods. John Wiley & Sons Inc, New YorkGoogle Scholar
  29. 29.
    Jeziorski B, Szalewicz K (2002) Intermolecular interactions by perturbation theory. Wiley, New YorkGoogle Scholar
  30. 30.
    Becke AD (1993) J Chem Phys 98(7):5648Google Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  32. 32.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200CrossRefGoogle Scholar
  33. 33.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97(4):2571Google Scholar
  34. 34.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100(8):5829Google Scholar
  35. 35.
    Boys S, Bernardi F (1970) Mol Phys 19(4):553CrossRefGoogle Scholar
  36. 36.
    Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105(24):11024Google Scholar
  37. 37.
    Grimme S (2006) J Comput Chem 27(15):1787CrossRefGoogle Scholar
  38. 38.
    Chai JD, Head-Gordon M (2008) J Chem Phys 128(8):084106Google Scholar
  39. 39.
    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  40. 40.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  41. 41.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153(6):503Google Scholar
  42. 42.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166(3):275Google Scholar
  43. 43.
    Dunning TH (1989) J Chem Phys 90(2):1007–1023Google Scholar
  44. 44.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796–6806Google Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  46. 46.
    Hanwell M, Curtis D, Lonie D, Vandermeersch T, Zurek E, Hutchison G (2012) J Cheminform 4(1):1CrossRefGoogle Scholar
  47. 47.
    Ayoub AT, Craddock TJA, Klobukowski M, Tuszynski J (2014) Biophys J (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ahmed T. Ayoub
    • 1
  • Jack Tuszynski
    • 2
  • Mariusz Klobukowski
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations