Anchoring the potential energy surface for the Br + H2O → HBr + OH reaction

  • Meiling Zhang
  • Yanjun Hao
  • Yundong Guo
  • Yaoming Xie
  • Henry F. Schaefer
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection


The forward and reverse reactions Br + H2O → HBr + OH are important in atmospheric and environmental chemistry. Five stationary points on the potential energy surface for the Br + H2O → HBr + OH reaction, including the entrance complex, transition state, and exit complex, have been studied using the CCSD(T) method with correlation-consistent basis sets up to cc-pV5Z-PP. Contrary to the valence isoelectronic F + H2O system, the Br + H2O reaction is endothermic (by 31.8 kcal/mol after zero-point vibrational, relativistic, and spin–orbit corrections), consistent with the experimental reaction enthalpy. The CCSD(T)/cc-pV5Z-PP method predicts that the reverse reaction HBr + HO → Br + H2O has a complex but no classical barrier. When zero-point vibrational energies are added, the transition state lies 0.25 kcal/mol above the separated products. This is consistent with the negative temperature dependence for the rate constant observed in experiments. The entrance complex is predicted to lie 2.6 kcal/mol below separated Br + H2O. The exit complex is predicted to lie 1.8 kcal/mol below separated HBr + OH.


Atmospheric chemistry Water reactions Bromine atoms OH radicals Potential energy surfaces Ab initio computations 



We thank Dr. Gabor Czakó for very helpful discussions. Correspondence with Professors Antonio de Oliveira-Filho and Joel Bowman are sincerely appreciated. This research was supported by Tianjin Natural Science Foundation (11JCYBJC14500), the National Natural Science Foundation of China (Grant No. 10904111), and China Postdoctoral Science Foundation (20100470792), as well as by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, Fundamental Interactions Branch.

Supplementary material

214_2014_1513_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (doc 2148 kb)


  1. 1.
    Sander SP, Friedl RR, Barker JR, Golden DM, Kurylo MJ, Wine PH, Abbatt J, Burkholder JB, Kolb CE, Moortgat GK, Huie RE, Orkin VL (2009) Chemical kinetics and photochemical data for use in stratospheric studies evaluation number 16. NASA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CAGoogle Scholar
  2. 2.
    Holloway AM, Wayne RP (2010) Atmospheric chemistry. RSC Publishing, CambridgeGoogle Scholar
  3. 3.
    Clark DR, Simmons RF, Smith DA (1970) Trans Faraday Soc 66:1423–1435CrossRefGoogle Scholar
  4. 4.
    Sims IR, Smith IWM, Clary DC, Bocherel P, Rowe BR (1994) J Chem Phys 101:1748–1751CrossRefGoogle Scholar
  5. 5.
    Clary DC, Nyman G, Hernandez R (1994) J Chem Phys 101:3704–3714CrossRefGoogle Scholar
  6. 6.
    Nizamov B, Setser DW, Wang H, Peslherbe GH, Hase WL (1996) J Chem Phys 105:9897–9911CrossRefGoogle Scholar
  7. 7.
    Jaramillo VI, Gougeon S, Le Picard SD, Canosa A, Smith MA, Rowe BR (2002) Int J Chem Kinet 34:339–344CrossRefGoogle Scholar
  8. 8.
    Che DC, Matsuo T, Yano Y, Bonnet L, Kasai T (2008) Phys Chem Chem Phys 10:1419–1423CrossRefGoogle Scholar
  9. 9.
    Liu JY, Li ZS, Dai ZW, Huang XR, Sun CC (2001) J Phys Chem A 105:7707–7712CrossRefGoogle Scholar
  10. 10.
    Tsai PY, Che DC, Nakamura M, Lin KC, Kasai T (2011) Phys Chem Chem Phys 13:1419–1423CrossRefGoogle Scholar
  11. 11.
    Ravishankara AR, Wine PH, Langford AO (1979) Chem Phys Lett 63:479–484CrossRefGoogle Scholar
  12. 12.
    Atkinson DB, Jaramillo VI, Snith MA (1997) J Phys Chem A 101:3356–3359CrossRefGoogle Scholar
  13. 13.
    Bedjianian Y, Riffault V, Le Bras G, Poulet G (1999) J Photochem Photobiol A Chem 128:15–25CrossRefGoogle Scholar
  14. 14.
    Wilson WE, O’Donovan JT, Fristrom RM (1969) 12th Symposium combustion. The Combustion Institute, PettsburghGoogle Scholar
  15. 15.
    Li J, Li YL, Guo H (2013) J Chem Phys 138:141102–141104CrossRefGoogle Scholar
  16. 16.
    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  17. 17.
    Scuseria GE, Janssen CL, Schaefer HF (1988) J Chem Phys 89:7382–7387CrossRefGoogle Scholar
  18. 18.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  19. 19.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  20. 20.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  21. 21.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  22. 22.
    Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110:7667–7676CrossRefGoogle Scholar
  23. 23.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  24. 24.
    CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG, with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD, with the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJ Aa, Jorgensen P, Olsen J), and ECP routines by Mitin AV, Wullen C van (2010)Google Scholar
  25. 25.
    Hoy AR, Bunker PR (1979) J Mol Spectrosc 74:1–8CrossRefGoogle Scholar
  26. 26.
    Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139–1165CrossRefGoogle Scholar
  27. 27.
    Rank DH, Rao BS, Wiggins TA (1965) J Mol Spectrosc 17:122–130CrossRefGoogle Scholar
  28. 28.
    Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  29. 29.
    Barletta P, Shirin SV, Zobov NF, Polyansky OL, Tennyson J, Valeev EF, Császár AG (2006) J Chem Phys 125:204307CrossRefGoogle Scholar
  30. 30.
    Lide DR (2014) Structure of free molecules in the gas phase, in Section 9, CRC Handbook of Chemistry and Physics, 94th Edition. In: Haynes WM, (ed), CRC Press/Taylor and Francis Group, Boca Raton, FLGoogle Scholar
  31. 31.
    Li G, Zhou L, Li Q-S, Xie Y, Schaefer HF (2012) Phys Chem Chem Phys 14:10891–10895CrossRefGoogle Scholar
  32. 32.
    Guo Y, Zhang M, Xie Y, Schaefer HF (2013) J Chem Phys 139:041101–041103CrossRefGoogle Scholar
  33. 33.
    Schaefer HF (1985) J Chem Phys 89:5336–5343CrossRefGoogle Scholar
  34. 34.
    Werner HJ, Kallay M, Gauss J (2008) J Chem Phys 128:034305–034308CrossRefGoogle Scholar
  35. 35.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569CrossRefGoogle Scholar
  36. 36.
    Czakó G (2013) J Chem Phys 138:134301–134305CrossRefGoogle Scholar
  37. 37.
    Moore CE (1971) Atomic energy levels, Volume II, page 159, NSRDS-NBS 35, Washington, DCGoogle Scholar
  38. 38.
    Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson KA, Song Y, Qian X, Ng C-Y, Liu J, Chen W, Schwenke DW (2002) J Phys Chem A 106:2727–2747CrossRefGoogle Scholar
  39. 39.
    Ruscic B (2014) Active thermochemical tables, version 1.112, Argonne national laboratory, Argonne, IL.
  40. 40.
    Linstrom PJ, Mallard WG (eds) (2014) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD Google Scholar
  41. 41.
    Shenyavskaya EA, Yungman VS (2004) J Phys Chem Ref Data 33:923–957CrossRefGoogle Scholar
  42. 42.
    Lide DR (2014) “Dipole Moments in section 9. In: Haynes WM (ed) CRC handbook of chemistry and physics, 94th edn. CRC Press/Taylor and Francis Group, Boca Raton, FLGoogle Scholar
  43. 43.
    de Oliveira-Filho AGS, Ornellas FR, Bowman JM (2014) J Phys Chem Lett 5:706–712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Meiling Zhang
    • 1
  • Yanjun Hao
    • 2
  • Yundong Guo
    • 3
  • Yaoming Xie
    • 4
  • Henry F. Schaefer
    • 4
  1. 1.School of Biomedical EngineeringTianjin Medical UniversityTianjinPeople’s Republic of China
  2. 2.College of Physical Science and TechnologySichuan UniversityChengduPeople’s Republic of China
  3. 3.School of Engineering and TechnologyNeijiang Normal UniversityNeijiangPeople’s Republic of China
  4. 4.Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations