A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory

  • Shawn Horn
  • Felix Plasser
  • Thomas Müller
  • Florian Libisch
  • Joachim Burgdörfer
  • Hans Lischka
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection


This study examines the radical nature and spin symmetry of the ground state of the quasi-linear acene and two-dimensional periacene series. For this purpose, high-level ab initio calculations have been performed using the multireference averaged quadratic coupled cluster theory and the COLUMBUS program package. A reference space consisting of restricted and complete active spaces is taken for the π-conjugated space, correlating 16 electrons with 16 orbitals with the most pronounced open-shell character for the acenes and a complete active-space reference approach with eight electrons in eight orbitals for the periacenes. This reference space is used to construct the total configuration space by means of single and double excitations. By comparison with more extended calculations, it is shown that a focus on the π space with a 6-31G basis set is sufficient to describe the major features of the electronic character of these compounds. The present findings suggest that the ground state is a singlet for the smaller members of these series, but that for the larger ones, singlet and triplet states are quasi-degenerate. Both the acenes and periacenes exhibit significant polyradical character beyond the traditional diradical.


Singlet–triplet splitting MR-AQCC Unpaired electron density Natural orbitals 



This work was supported by the National Science Foundation under Project No. CHE-1213263, by the Austrian Science Fund (SFB F41, ViCoM, and Project P20893-N19), and the Robert A. Welch Foundation under Grant No. D-0005. Shawn Horn is funded by a research fellowship at Texas Tech University. Computer time at the Vienna Scientific Cluster (Project Nos. 70151 and 70376) and by the Chemistry Computational Cluster of Texas Tech University is gratefully acknowledged.

Supplementary material

214_2014_1511_MOESM1_ESM.doc (634 kb)
Supplementary material 1 (DOC 634 kb)


  1. 1.
    Geim A, Novoselov K (2007) Nat Mater 6:183CrossRefGoogle Scholar
  2. 2.
    Bendikov M, Wudl F, Perepichka D (2004) Chem Rev 104:4891CrossRefGoogle Scholar
  3. 3.
    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Proc Natl Acad Sci 102:10451CrossRefGoogle Scholar
  4. 4.
    Lu G, Yu K, Wen Z, Chen J (2013) Nanoscale 5:1353CrossRefGoogle Scholar
  5. 5.
    Son Y, Cohen M, Louie S (2006) Nature 444:347CrossRefGoogle Scholar
  6. 6.
    Angliker H, Rommel E, Wirz J (1982) Chem Phys Lett 87:208CrossRefGoogle Scholar
  7. 7.
    Mondal R, Shah B, Neckers D (2006) J Am Chem Soc 128:9612CrossRefGoogle Scholar
  8. 8.
    Tonshoff C, Bettinger H (2010) Angew Chem Int Ed 49:4125CrossRefGoogle Scholar
  9. 9.
    Zade SS, Bendikov M (2010) Angew Chem Int Edit 49:4012CrossRefGoogle Scholar
  10. 10.
    Bendikov M, Duong H, Starkey K, Houk K, Carter E, Wudl F (2004) J Am Chem Soc 126:7416CrossRefGoogle Scholar
  11. 11.
    Jiang D, Dai S (2008) J Phys Chem A 112:332CrossRefGoogle Scholar
  12. 12.
    Rivero P, Jimenez-Hoyos C, Scuseria G (2013) J Phys Chem B 117:12750CrossRefGoogle Scholar
  13. 13.
    Zimmerman P, Bell F, Casanova D, Head-Gordon M (2011) J Am Chem Soc 133:19944CrossRefGoogle Scholar
  14. 14.
    Hod O, Barone V, Scuseria G (2008) Chem Phys Lett 466:72CrossRefGoogle Scholar
  15. 15.
    Jiang D, Sumpter B, Dai S (2007) J Chem Phys 126:134701CrossRefGoogle Scholar
  16. 16.
    Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2010) Chem Phys Lett 489:212CrossRefGoogle Scholar
  17. 17.
    Barone V, Hod O, Peralta J, Scuseria G (2011) Acc Chem Res 44:269CrossRefGoogle Scholar
  18. 18.
    Jiang DE, Dai S (2008) Chem Phys Lett 466:72CrossRefGoogle Scholar
  19. 19.
    Hachmann J, Dorando J, Aviles M, Chan G (2007) J Chem Phys 127:134309CrossRefGoogle Scholar
  20. 20.
    Mizukami W, Kurashige Y, Yanai T (2012) J Chem Theory Comput 9:401–407CrossRefGoogle Scholar
  21. 21.
    Gidofalvi G, Mazziotti D (2008) J Chem Phys 129:134108CrossRefGoogle Scholar
  22. 22.
    Pelzer K, Greenman L, Gidofalvi G, Mazziotti D (2011) J Phys Chem A 115:5632CrossRefGoogle Scholar
  23. 23.
    Casanova D, Head-Gordon M (2009) Phys Chem Chem Phys 11:9779CrossRefGoogle Scholar
  24. 24.
    Hajgato B, Huzak M, Deleuze M (2011) J Phys Chem A 115:9282CrossRefGoogle Scholar
  25. 25.
    Hajgato B, Szieberth D, Geerlings P, de Proft F, Deleuze M (2009) J Chem Phys 131:22CrossRefGoogle Scholar
  26. 26.
    Plasser F, Pasalic H, Gerzabek M, Libisch F, Reiter R, Burgdorfer J, Muller T, Shepard R, Lischka H (2013) Angew Chem Int Ed 52:2581CrossRefGoogle Scholar
  27. 27.
    Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) J Am Chem Soc 132:3440CrossRefGoogle Scholar
  28. 28.
    Balaban AT, Klein DJ (2009) J Phys Chem C 113:19123CrossRefGoogle Scholar
  29. 29.
    Pisani L, Chan JA, Montanari B, Harrison NM (2007) Phys Rev B 75:064418CrossRefGoogle Scholar
  30. 30.
    Purushotharman B, Bruzek M, Parkin S, Miller A, Anthony J (2011) Angew Chem Int Ed 50:7013CrossRefGoogle Scholar
  31. 31.
    Houk K, Lee P, Nendel M (2001) J Org Chem 66:5517CrossRefGoogle Scholar
  32. 32.
    Rayne S, Forest K (2011) Comput Theor Chem 976:105CrossRefGoogle Scholar
  33. 33.
    Chakraborty H, Shukla A (2013) J Phys Chem A 117:14220CrossRefGoogle Scholar
  34. 34.
    Knippenberg S, Starcke JH, Wormit M, Dreuw A (2010) Mol Phys 108:2801CrossRefGoogle Scholar
  35. 35.
    Szalay P, Bartlett R (1993) Chem Phys Lett 214:481CrossRefGoogle Scholar
  36. 36.
    Antol I, Eckert-Maksic M, Lischka H, and Maksic Z (2007) Eur J Org Chem 3173Google Scholar
  37. 37.
    Wang E, Parish C, Lischka H (2008) J Chem Phys 129:044306CrossRefGoogle Scholar
  38. 38.
    Szalay P, Muller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108CrossRefGoogle Scholar
  39. 39.
    Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175CrossRefGoogle Scholar
  40. 40.
    Staroverov V, Davidson E (2000) Chem Phys Lett 330:161CrossRefGoogle Scholar
  41. 41.
    Head-Gordon M (2003) Chem Phys Lett 372:508CrossRefGoogle Scholar
  42. 42.
    Moller C, Plesset M (1934) Phys Rev 46:0618CrossRefGoogle Scholar
  43. 43.
    Vahtras O, Almlof J, Feyereisen M (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  44. 44.
    Weigend F, Haser M (1997) Theor Chem Acc 97:331CrossRefGoogle Scholar
  45. 45.
    Schafer A, Horn H, Ahlrichs R (1997) J Chem Phys 97:2571CrossRefGoogle Scholar
  46. 46.
    Luken W (1978) Chem Phys Lett 58:421CrossRefGoogle Scholar
  47. 47.
    Hehre W, Ditchfield R, Pople J (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  48. 48.
    Hosteny R, Dunning T Jr, Gilman R, Pipano A, Shavitt I (1975) J Chem Phys 62:4764CrossRefGoogle Scholar
  49. 49.
    Becke A (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  50. 50.
    Perdew J (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  51. 51.
    Haser M, Ahlrichs R (1989) J Comput Chem 10:104CrossRefGoogle Scholar
  52. 52.
    Treutler O, Ahlrichs R (1995) J Chem Phys 102:346CrossRefGoogle Scholar
  53. 53.
    Lischka H, Shepard R, Pitzer R, Shavitt I, Dallos M, Muller T, Szalay P, Seth M, Kedziora G, Yabushita S, Zhang Z (2001) Phys Chem Chem Phys 3:664CrossRefGoogle Scholar
  54. 54.
    Lischka H, Shepard R, Shavitt I, Pitzer R, Dallos M, Müller T, Szalay P, Brown F, Ahlrichs R, Böhm H, Chang A, Comeau D, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, G K, Kovar T, Parasuk V, Pepper M, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg E, Zhao J-G, Yabushita S, Z Z, Barbatti M, Matsika S, Schuurmann M, Yarkony D, Brozell S, Beck E, Blaudeau J-P, Ruckenbauer M, Sellner B, Plasser F, Szymczak J (2012) COLUMBUS, an ab initio electronic structure program, release 7.0Google Scholar
  55. 55.
    Lischka H, Muller T, Szalay PG, Shavitt I, Pitzer RM, Shepard R (2011) Wires Comput Mol Sci 1:191CrossRefGoogle Scholar
  56. 56.
    Birks J (1970) Photophysics of aromatic molecules. Wiley, LondonGoogle Scholar
  57. 57.
    Schiedt J, Weinkauf R (1997) Chem Phys Lett 266:201CrossRefGoogle Scholar
  58. 58.
    Sabbatini N, Indelli M, Gandolfi M, Balzani V (1982) J Phys Chem 86:3585CrossRefGoogle Scholar
  59. 59.
    Burgos J, Pope M, Swendberg C, Alfano R (1977) Phys Status Solidi B 83:249CrossRefGoogle Scholar
  60. 60.
    Wang J, Zubarev D, Philpott M, Vukovic S, Lester W, Cui T, Kawazoe Y (2010) Phys Chem Chem Phys 12:9839–9844CrossRefGoogle Scholar
  61. 61.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M (1996) Phys Rev B 54:17954CrossRefGoogle Scholar
  62. 62.
    Cui Z, Lischka H, Mueller T, Plasser F, Kertesz M (2013) Chem Phys Chem. doi: 10.1002/cphc.201300784 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shawn Horn
    • 1
  • Felix Plasser
    • 3
  • Thomas Müller
    • 4
  • Florian Libisch
    • 5
  • Joachim Burgdörfer
    • 5
  • Hans Lischka
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA
  2. 2.Institute for Theoretical ChemistryUniversity of ViennaViennaAustria
  3. 3.Interdisciplinary Center for Scientific ComputingRuprecht-Karls-UniversityHeidelbergGermany
  4. 4.Institute of Advanced SimulationJülich Supercomputer CentreJülichGermany
  5. 5.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations