Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning

  • Aaron M. Virshup
  • Benjamin G. Levine
  • Todd J. Martínez
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection


Photoisomerization of conjugated systems is a common pathway for photomechanical energy conversion in biological chromophores. There are many examples where the local environment of the chromophore plays an important role in determining the outcome of photoisomerization. We have investigated the effect of simple steric and electrostatic environments on the excited-state photodynamics of ethylene, a simple model for larger conjugated systems. Ab initio electronic structure methods were combined with molecular mechanical force fields to describe the ground and excited-state potential energy surfaces of ethylene embedded in electrostatic and steric environments. The time evolution of the system following photoabsorption was modeled using the ab initio multiple spawning (AIMS) method for quantum dynamics. We introduce a new method for integration of the equations of motion in AIMS, which detects conical intersections automatically and then decreases the timestep adaptively around them. Neither steric hindrance nor electrostatics have a large effect on the excited-state lifetime, even at effective pressures as large as 2 GPa. However, a nearby point charge creates an electric field that stabilizes one of two symmetry-related conical intersections, biasing the reaction toward a particular photoisomerization pathway. For the larger tetramethylethylene, where steric hindrance is expected to be more pronounced, we also see no effect on the excited-state lifetime. Our results suggest that electrostatic interactions are more effective than steric hindrance in modifying the course of excited-state reactions.


Isomerization Nonadiabatic dynamics Surface hopping 



This work has been supported by the NSF (OCI-10-47577 and CHE-11-24515) with computational support through DOE from the AMOS program within the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. We are pleased to dedicate this article to the memory of Isaiah Shavitt, who all the authors interacted with many times at UIUC.


  1. 1.
    Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985CrossRefGoogle Scholar
  2. 2.
    Yarkony DR (1998) Conical intersections: diabolical and often misunderstood. Acc Chem Res 31:511CrossRefGoogle Scholar
  3. 3.
    Bernardi F, Olivucci M, Robb MA (1996) Potential energy surface crossings in organic photochemistry. Chem Soc Rev 25:321CrossRefGoogle Scholar
  4. 4.
    Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH Publishers Inc, New YorkGoogle Scholar
  5. 5.
    Levine BG, Martinez TJ (2007) Isomerization through conical intersections. Ann Rev Phys Chem 58:613CrossRefGoogle Scholar
  6. 6.
    Virshup AM, Punwong C, Pogorelov TV, Lindquist B, Ko C, Martínez TJ (2009) Photodynamics in complex environments: ab initio multiple spwaning quantum mechanical/molecular mechanical dynamics. J Phys Chem B 113:3280CrossRefGoogle Scholar
  7. 7.
    Groenhof G, Schäfer LV, Boggio-Pasqua M, Grubmüller H, Robb MA (2008) Arginine52 controls the photoisomerization process in photoactive yellow protein. J Am Chem Soc 130:3250CrossRefGoogle Scholar
  8. 8.
    Ko C, Virshup AM, Martínez TJ (2008) Electrostatic control of the photoisomerization in the photoactive yellow protein chromophore: hybrid QM/MM ab initio multiple spawning simulation. Chem Phys Lett 460:272CrossRefGoogle Scholar
  9. 9.
    Cembran A, Bernardi F, Olivucci M, Garavelli M (2004) Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J Am Chem Soc 126:16018CrossRefGoogle Scholar
  10. 10.
    Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005) Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum chemical study. J Am Chem Soc 127:3952CrossRefGoogle Scholar
  11. 11.
    Cembran A, Bernardi F, Olivucci M, Garavelli M (2005) The retinal chromophore/chloride ion pair: structure of the photoisomerization path and interplay of charge transfer and covalent states. Proc Natl Acad Sci 102:6255CrossRefGoogle Scholar
  12. 12.
    Olsen S, Toniolo A, Ko C, Manohar L, Lamothe K, Martinez TJ (2005) Computation of reaction mechanisms and dynamics in photobiology. In: Olivucci M (ed) Computational photochemistry. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Toniolo A, Olsen S, Manohar L, Martinez TJ (2004) Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Faraday Discus 127:149CrossRefGoogle Scholar
  14. 14.
    Martínez TJ (2006) Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. Acc Chem Res 39:119CrossRefGoogle Scholar
  15. 15.
    Vallee BL, Williams RJP (1968) Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci 59:498CrossRefGoogle Scholar
  16. 16.
    Lightstone FC, Bruice TC (1996) Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-Endoxo-Δ4-tetrahydrophthalate monophenyl ester. J Am Chem Soc 118:2595CrossRefGoogle Scholar
  17. 17.
    Ford L, Johnson L, Machin P, Phillips D, Tijian R (1974) Crystal structure of lysozyme-tetrasaccharide lactone complex. J Mol Bio 88:349CrossRefGoogle Scholar
  18. 18.
    Ryde U, Olsson MHM, Pierloot K, Roos BO (1996) The cupric geometry of blue copper proteins is not strained. J Mol Bio 261:586CrossRefGoogle Scholar
  19. 19.
    Shurki A, Štrajbl M, Villa J, Warshel A (2002) How much do enzymes really gain by restraining fragments? J Am Chem Soc 124:4097CrossRefGoogle Scholar
  20. 20.
    Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress and insights. Ann Rev Biophys Biomol Struct 32:425CrossRefGoogle Scholar
  21. 21.
    Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764:1647CrossRefGoogle Scholar
  22. 22.
    Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313:200CrossRefGoogle Scholar
  23. 23.
    Ben-Nun M, Martínez TJ (2000) Photodynamics of ethylene: ab initio studies of conical intersections. Chem Phys 259:237CrossRefGoogle Scholar
  24. 24.
    Quenneville J, Martínez T (2003) Ab initio study of cis-trans photoisomerization in stilbene and ethylene. J Phys Chem, 107AGoogle Scholar
  25. 25.
    Barbatti M, Paier J, Lischka H (2004) Photochemistry of ethylene: a multireference configuration interaction investigation of the excited-state energy surfaces. J Chem Phys 121:11614CrossRefGoogle Scholar
  26. 26.
    Barbatti M, Ruckenbauer M, Lischka H (2005) The photodynamics of ethylene: a surface-hopping study on structural aspects. J Chem Phys 122:174307CrossRefGoogle Scholar
  27. 27.
    Tao H, Levine BG, Martinez TJ (2009) Ab initio multiple spawning dynamics using multi-state second-order perturbation theory. J Phys Chem A 113:13656CrossRefGoogle Scholar
  28. 28.
    Mori T, Glover WJ, Schuurman MS, Martinez TJ (2012) Role of Rydberg States in the photochemical dynamics of ethylene. J Phys Chem A 116:2808CrossRefGoogle Scholar
  29. 29.
    Mestdagh JM, Visticot JP, Elhanine M, Soep B (2000) Prereactive evolution of monoalkenes excited in the 6 eV region. J Chem Phys 113:237CrossRefGoogle Scholar
  30. 30.
    Farmanara P, Stert V, Radloff W (1998) Ultrafast internal conversion and fragmentation in electronically excited C2H4 and C2H3Cl molecules. Chem Phys Lett 288:518CrossRefGoogle Scholar
  31. 31.
    Tao H, Allison TK, Wright TW, Stooke AM, Khurmi C, Tilborg JV, Liu Y, Falcone RW, Belkacem A, Martinez TJ (2011) Ultrafast internal conversion in ethylene. I. The excited state lifetime. J Chem Phys 134:244306CrossRefGoogle Scholar
  32. 32.
    Sension RJ, Hudson BS (1989) Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene. J Chem Phys 90:1377CrossRefGoogle Scholar
  33. 33.
    Brooks BR, Schaefer IHF (1979) Sudden polarization: pyramidalization of twisted ethylene. J Am Chem Soc 101:307CrossRefGoogle Scholar
  34. 34.
    Bonacic-Koutecky V, Bruckmann P, Hiberty P, Koutecky J, Leforestier C, Salem L (1975) Sudden Polarization in the Zwitterionic Z1 excited states of organic intermediates Photochemical implications. Ang Chem 14:575CrossRefGoogle Scholar
  35. 35.
    Bonacic-Koutecky V (1978) Sudden polarization in zwitterionic excited states of organic intermediates in photochemical reactions. On a possible mechanism for bicyclo[3.1.0]hex-2-ene formation. J Am Chem Soc 100:396CrossRefGoogle Scholar
  36. 36.
    Bonacic-Koutecky V, Koutecky J, Michl J (1987) Neutral and charged Biradicals, Zwitterions, funnels in S1, and proton translocation: their role in photochemistry, photophysics, and vision. Ang Chem 26:170CrossRefGoogle Scholar
  37. 37.
    Barbatti M, Granucci G, Persico M, Lischka H (2004) Semiempirical molecular dynamics investigation of the excited state lifetime of ethylene. Chem Phys Lett 401:276CrossRefGoogle Scholar
  38. 38.
    Ben-Nun M, Martínez TJ (1998) Ab initio molecular dynamics study of cis-trans photoisomerization in ethylene. Chem Phys Lett 298:57CrossRefGoogle Scholar
  39. 39.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227CrossRefGoogle Scholar
  40. 40.
    Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Ann Rev Phys Chem 59:573CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112:3483CrossRefGoogle Scholar
  42. 42.
    Field M, Bash P, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comp Chem 11:700CrossRefGoogle Scholar
  43. 43.
    Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Ann Rev Phys Chem 56:389CrossRefGoogle Scholar
  44. 44.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Ang Chem Int Ed 48:1198CrossRefGoogle Scholar
  45. 45.
    Slavicek P, Martinez TJ (2006) Multicentered valence electron effective potentials: solution to the link atom problem for ground and excited electronic states. J Chem Phys 124:084107CrossRefGoogle Scholar
  46. 46.
    Ben-Nun M, Martinez TJ (1998) Direct evaluation of the Pauli repulsion energy using ‘classical’ wavefunction in hybrid quantum/classical potential energy surfaces. Chem Phys Lett 290:289CrossRefGoogle Scholar
  47. 47.
    Maitland GC, Smith EB (1971) The intermolecular pair potential of argon. Mol Phys 22:861CrossRefGoogle Scholar
  48. 48.
    Cornell W, Cieplak P, Bayly C, Gould I, Merz JK, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179CrossRefGoogle Scholar
  49. 49.
    Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics: ab initio methods in quantum chemistry II. Wiley, New York, p 399CrossRefGoogle Scholar
  50. 50.
    Docken K, Hinze J (1972) LiH potential curves and wave functions. J Chem Phys 57:4928CrossRefGoogle Scholar
  51. 51.
    Werner H-J, Knowles PJ, Lindh R, Schuetz M, Celani P, Korona T, Manby FR, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T MOLPRO, version, a package of ab initio programsGoogle Scholar
  52. 52.
    Frisch M, Pople J, Binkley J (1984) Self-consistent molecular orbital methods. J Chem Phys 80:3265CrossRefGoogle Scholar
  53. 53.
    Ben-Nun M, Martínez T (2002) Ab initio quantum molecular dynamics. Adv Chem Phys, 121Google Scholar
  54. 54.
    Ben-Nun M, Quenneville J, Martínez T (2000) Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J Phys Chem 104A:5161CrossRefGoogle Scholar
  55. 55.
    Heller E (1981) Frozen gaussians: a very simple semiclassical approximation. J Chem Phys 75:2923CrossRefGoogle Scholar
  56. 56.
    Levine BG, Coe JD, Virshup AM, Martínez TJ (2008) Implementation of ab initio multiple spawning in the MolPro quantum chemistry package. Chem Phys 347:3CrossRefGoogle Scholar
  57. 57.
    Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S (2012) Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J Chem Phys 137:014512CrossRefGoogle Scholar
  58. 58.
    Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S (2013) Artifacts due to trivial unavoided crossings in the modeling of photoinduced energy transfer dynamics in extended conjugated molecules. Chem Phys Lett 590:208CrossRefGoogle Scholar
  59. 59.
    Wang L, Prezhdo OV (2014) A simple solution to the trivial crossing problem in surface hopping. J Phys Chem Lett 5:713CrossRefGoogle Scholar
  60. 60.
    Habershon S (2012) Linear dependence and energy conservation in Gaussian wave packet basis sets. J Chem Phys 136:014109CrossRefGoogle Scholar
  61. 61.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford, p 385Google Scholar
  62. 62.
    Kutteh R (1998) RATTLE recipe for general holonomic constraints angle and torsion constraints. CCP5 Newslett, 46:9Google Scholar
  63. 63.
    Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martinez TJ (2001) Comparison of full multiple spawning, trajectory surface hopping and converged quantum mechanics for electronically nonadiabatic dynamics. J Chem Phys 115:1172CrossRefGoogle Scholar
  64. 64.
    Efron R, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54CrossRefGoogle Scholar
  65. 65.
    Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aaron M. Virshup
    • 1
  • Benjamin G. Levine
    • 2
  • Todd J. Martínez
    • 3
    • 4
  1. 1.Department of ChemistryDuke UniversityDurhamUSA
  2. 2.Department of ChemistryMichigan State UniversityEast LansingUSA
  3. 3.Department of Chemistry and the PULSE InstituteStanford UniversityStanfordUSA
  4. 4.SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations