Topological phase transitions in the vibration–rotation dynamics of an isolated molecule

Regular Article
Part of the following topical collections:
  1. Ezra Festschrift Collection

Abstract

One of the characteristic features of rotation–vibration dynamics is the existence of a variety of energy bands which result from organization of energy levels into bands depending on control parameters. Symmetry and topology aspects of the organization of energy bands and generic modifications of this structure for molecular systems with symmetry are discussed in a way parallel to the description of topological quantum transitions extensively studied in condensed matter physics. A special class of axially symmetric molecular systems is analyzed. It is shown that only a finite number of different band structures are possible for rotation–vibration problem with a finite number of vibrational states in the case of continuous axial symmetry, whereas for problems with finite group symmetry an arbitrary large number of different band structures are formally allowed.

Keywords

Energy band Chern number Rotation–vibration 

References

  1. 1.
    Arnold VI (1995) Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect. Selecta Mathematica 1:1–19CrossRefGoogle Scholar
  2. 2.
    Berry MV (1984) Quantal phase factor accompanying adiabatic changes. Proc R Soc Lond A 392:45–57CrossRefGoogle Scholar
  3. 3.
    Brodersen S, Zhilinskii B (1995) Transfer of clusters between the vibrational components of CF4. J Mol Spectrosc 169:1–17CrossRefGoogle Scholar
  4. 4.
    Broer HW, Cushman RH, Fassò F, Takens F (2007) Geometry of KAM-tori for nearly integrable Hamiltonian systems. Ergod Theory Dyn Syst 27:725–741CrossRefGoogle Scholar
  5. 5.
    Caspers WJ (2008) Degeneracy of the eigenvalues of hermitian matrices. J Phys Conf Ser 104:012032CrossRefGoogle Scholar
  6. 6.
    Chen X, Gu Z-C, Liu Z-X, Wen X-G (2012) Symmetry protected topological orders and the group cohomology of their symmetry group. Science 338:1604–1606CrossRefGoogle Scholar
  7. 7.
    Cushman RH, Duistermaat JJ (1988) The quantum mechanical spherical pendulum. Bull Am Math Soc 19:475–479CrossRefGoogle Scholar
  8. 8.
    Efstathiou K, Sadovskii D (2010) Normalization and global analysis of perturbations of the hydrogen atom. Rev Mod Phys 82:2099–2154 CrossRefGoogle Scholar
  9. 9.
    Faure F, Zhilinskii B (2000) Topological Chern indices in molecular spectra. Phys Rev Lett 85:960–963CrossRefGoogle Scholar
  10. 10.
    Faure F, Zhilinskii B (2002) Topologically coupled energy bands in molecules. Phys Lett A 302:242–252CrossRefGoogle Scholar
  11. 11.
    Shapere A, Wilczek F (eds) (1989) Geometric phases in physics. World Scientific, SingaporeGoogle Scholar
  12. 12.
    Faddeev LD, Popov VN (1967) Feynman diagrams for the Yang–Mills field. Phys Lett B 25:29–30CrossRefGoogle Scholar
  13. 13.
    Harter W (1993) Principles of symmetry, dynamics, and spectroscopy. Wiley Interscience, New YorkGoogle Scholar
  14. 14.
    Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82:3045–3067CrossRefGoogle Scholar
  15. 15.
    Iwai T, Zhilinskii B (2011) Energy bands: Chern numbers and symmetry. Ann Phys (NY) 326:3013–3066CrossRefGoogle Scholar
  16. 16.
    Iwai T, Zhilinskii B (2012) Rearrangement of energy bands: Chern numbers in the presence of cubic symmetry. Acta Appl Math 120:153–175CrossRefGoogle Scholar
  17. 17.
    Iwai T, Zhilinskii B (2013) Qualitative features of the rearrangement of molecular energy spectra from a “wall-crossing” perspective. Phys Lett A 377:2481–2486CrossRefGoogle Scholar
  18. 18.
    Iwai T, Zhilinskii B (2014) Chern number modification in crossing the boundary between different band structures. Three band model with cubic symmetry. Submitted for publicationGoogle Scholar
  19. 19.
    Kane CL, Mele EJ (2005) Z 2 topological order and the quantum spin Hall effect. Phys Rev Lett 95:146802CrossRefGoogle Scholar
  20. 20.
    Kitaev A (2009) Periodic table for topological insulators and superconductors. AIP Conf Proc 1134:22–30CrossRefGoogle Scholar
  21. 21.
    Kohmoto M (1985) Topological invariant and the quantization of the Hall conductance. Ann Phys (NY) 160:343–354CrossRefGoogle Scholar
  22. 22.
    Kontsevich M, Soibelman Y (2013) Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry. arXiv:1303.3253 to appear in Lecture Notes in Mathematics
  23. 23.
    Michel L, Zhilinskii B (2001) Symmetry, invariants topology. Basic tools. Phys Rep 341:11–84CrossRefGoogle Scholar
  24. 24.
    Moore JE, Balents L (2007) Topological invariants of time-reversal-invariant band structures. Phys Rev B 75:121306(R)CrossRefGoogle Scholar
  25. 25.
    Pavlichenkov I, Zhilinskii B (1988) Critical phenomena in rotational spectra. Ann Phys (NY) 184:1–32CrossRefGoogle Scholar
  26. 26.
    Pavlov-Verevkin VB, Sadovskii DA, Zhilinskii BI (1988) On the dynamical meaning of diabolic points. Europhys Lett 6:573–78CrossRefGoogle Scholar
  27. 27.
    Sadovskii D, Zhilinskii B (1999) Monodromy, diabolic points, and angular momentum coupling. Phys Lett A 256:235–44CrossRefGoogle Scholar
  28. 28.
    Sadovskii D, Zhilinskii B (2006) Quantum monodromy, its generalizations and molecular manifestations. Mol Phys 104:2595–2615CrossRefGoogle Scholar
  29. 29.
    Shrivastava KN (2004) Negative-spin quasiparticles in quantum Hall effect. Phys Lett A 326:469–472CrossRefGoogle Scholar
  30. 30.
    van Tonder A (2002) Ghost as negative spinors. Nucl Phys B 645:371–386CrossRefGoogle Scholar
  31. 31.
    Vu Ngoc S (1999) Quantum monodromy in integrable systems. Commun Math Phys 203:465–479CrossRefGoogle Scholar
  32. 32.
    Zhilinskii B (2001) Symmetry, invariants and topology in molecular models. Phys Rep 341:85–172CrossRefGoogle Scholar
  33. 33.
    Zhilinskii B (2011) Quantum bifurcations. In: Meyers R (ed) Mathematics of complexity and dynamical systems. Springer, New York, pp 1438–1456Google Scholar
  34. 34.
    Zhilinskii B, Brodersen S (1994) The symmetry of the vibrational components in Td molecules. J Mol Spectrosc 163:326–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Université du LittoralDunkerqueFrance

Personalised recommendations