Advertisement

DFT-steric-based energy decomposition analysis of intermolecular interactions

  • Dong Fang
  • Jean-Philip Piquemal
  • Shubin Liu
  • G. Andrés Cisneros
Regular Article

Abstract

Application of a novel energy decomposition analysis (EDA) based on the recently introduced density functional theory (DFT) steric analysis is presented. The method is compared with results from the constrained space orbital variations (CSOV) and Bader’s quantum theory of atoms in molecules (QTAIM) topological analysis. These two analyses explain the driving forces for the formation of dimers from different perspectives. The components of the DFT steric analysis are shown to have good linear relationships with the total interaction energy for hydrogen-bonding dimers. It is observed that some components from the new EDA method, such as steric energy, favor the formation of dimers. Moreover, comparison of the different contributions between CSOV and the DFT steric analysis provides additional insights into the physical meaning of the respective components. In addition to the total interaction energy, DFT steric energy has been found to correlate with the electron density at critical points from QTAIM analysis in different patterns for different molecular systems, which qualitatively accounts for the linear relationships between the steric and total interaction energy. The DFT steric energy is found to represent effects arising from the spatial arrangement of the electron density when dimers form, reminiscent of the steric effects invoked in chemical systems.

Keywords

DFT steric CSOV QTAIM 

Supplementary material

214_2014_1484_MOESM1_ESM.pdf (161 kb)
Supplementary material 1 (PDF 161 kb)

References

  1. 1.
    Hirschfelder JO (1967) Chem Phys Lett 1:363–368CrossRefGoogle Scholar
  2. 2.
    Murrell JN, Shaw G (1967) J Chem Phys 46:1768–1772CrossRefGoogle Scholar
  3. 3.
    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340CrossRefGoogle Scholar
  4. 4.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1558–1565CrossRefGoogle Scholar
  5. 5.
    Bagus PS, Hermann K, Bauschlicher JCW (1984) J Chem Phys 80:4378–4386CrossRefGoogle Scholar
  6. 6.
    Stevens WJ, Fink WH (1987) Chem Phys Lett 139:15–22CrossRefGoogle Scholar
  7. 7.
    Glendening ED, Streitwieser A (1994) J Chem Phys 100:2900–2909CrossRefGoogle Scholar
  8. 8.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  9. 9.
    Chen W, Gordon MS (1996) J Phys Chem 100:14316–14328CrossRefGoogle Scholar
  10. 10.
    Mo Y, Gao J, Peyerimhoff SD (2000) J Chem Phys 112:5530–5538CrossRefGoogle Scholar
  11. 11.
    Mayer I (2003) Chem Phys Lett 382:265–269CrossRefGoogle Scholar
  12. 12.
    Hesselmann A, Jansen G, Schutz M (2005) J Chem Phys 122:014103–014117CrossRefGoogle Scholar
  13. 13.
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) J Phys Chem A 111:8753–8765CrossRefGoogle Scholar
  14. 14.
    Liu S (2007) J Chem Phys 126:244103–244105CrossRefGoogle Scholar
  15. 15.
    Reinhardt P, Piquemal J-P, Savin A (2008) J Chem Theory Comput 4:2020–2029CrossRefGoogle Scholar
  16. 16.
    Cisneros GA, Darden TA, Gresh N, Reinhardt P, Parisel O, Pilmé J, Piquemal J-P (2009) Design of next generation polarizable force fields from ab initio computations: beyond point charges. Multi-scale quantum models for biocatalysis: modern techniques and applications, for the book series: challenges and advances in computational chemistry and physics. Springer, LondonGoogle Scholar
  17. 17.
    Su P, Li H (2009) J Chem Phys 131:014102–014115CrossRefGoogle Scholar
  18. 18.
    Wu Q, Ayers PW, Zhang Y (2009) J Chem Phys 131:164112–164118CrossRefGoogle Scholar
  19. 19.
    Steinmann SN, Corminboeuf C, Wu W, Mo Y (2011) J Phys Chem A 115:5467–5477CrossRefGoogle Scholar
  20. 20.
    Azar RJ, Head-Gordon M (2012) J Chem Phys 136:024103–024108CrossRefGoogle Scholar
  21. 21.
    Szczesniak MM, Chalasinski G, Cybulski SM (1992) J Chem Phys 96:463–469CrossRefGoogle Scholar
  22. 22.
    Khaliullin RZ, Bell AT, Head-Gordon M (2009) Chem Eur J 15:851–855CrossRefGoogle Scholar
  23. 23.
    Liu S, Govind N (2008) J Phys Chem A 112:6690–6699CrossRefGoogle Scholar
  24. 24.
    Huang Y, Zhong A-G, Yang Q, Liu S (2011) J Chem Phys 134:084103–084109CrossRefGoogle Scholar
  25. 25.
    Liu S, Hu H, Pedersen LG (2010) J Phys Chem A 114:5913–5918CrossRefGoogle Scholar
  26. 26.
    Bader RFW (1985) Acc Chem Res 18:9–15CrossRefGoogle Scholar
  27. 27.
    Weizsacker CFV (1935) Z Phys A Hadrons Nucl 96:431Google Scholar
  28. 28.
    Rong C, Lu T, Liu S (2014) J Chem Phys 140:024109CrossRefGoogle Scholar
  29. 29.
    Badenhoop JK, Weinhold F (1997) J Chem Phys 107:5406–5421CrossRefGoogle Scholar
  30. 30.
    Nagy Á (2007) Chem Phys Lett 449:212–215CrossRefGoogle Scholar
  31. 31.
    Pinter B, Fievez T, Bickelhaupt FM, Geerlings P, De Proft F (2012) Phys Chem Chem Phys 14:9846–9854CrossRefGoogle Scholar
  32. 32.
    Bagus PS, Illas F (1992) J Chem Phys 96:8962–8970CrossRefGoogle Scholar
  33. 33.
    Neyman KM, Ruzankin SP, Rösch N (1995) Chem Phys Lett 246:546–554CrossRefGoogle Scholar
  34. 34.
    Márquez AM, López N, García-Hernández M, Illas F (1999) Surf Sci 442:463–476CrossRefGoogle Scholar
  35. 35.
    Piquemal J-P, Marquez A, Parisel O, Giessner-Prettre C (2005) J Comput Chem 26:1052–1062CrossRefGoogle Scholar
  36. 36.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  40. 40.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  41. 41.
    Dupuis M, Marquez A, Davidson ER (1999) HONDO 95.3. Quantum Chemistry Program Exchange (QCPE), BloomingtonGoogle Scholar
  42. 42.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489CrossRefGoogle Scholar
  43. 43.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  44. 44.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  45. 45.
    Balabin RM (2008) J Chem Phys 129:164101–164105CrossRefGoogle Scholar
  46. 46.
    Saritha B, Durga Prasad M (2012) J Chem Sci 124:209–214CrossRefGoogle Scholar
  47. 47.
    Saritha B, Durga Prasad M (2011) J Phys Chem A 115:2802–2810CrossRefGoogle Scholar
  48. 48.
    Wang Y, Zhao D, Rong C, Liu S (2013) Acta Phys Chim Sin 29:2173Google Scholar
  49. 49.
    Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110:3349–3351CrossRefGoogle Scholar
  50. 50.
    Ess DH, Liu S, De Proft F (2010) J Phys Chem A 114:12952–12957CrossRefGoogle Scholar
  51. 51.
    Jaffe RL, Smith GD (1996) J Chem Phys 105:2780–2788CrossRefGoogle Scholar
  52. 52.
    Sinnokrot MO, Sherrill CD (2006) J Phys Chem A 110:10656–10668CrossRefGoogle Scholar
  53. 53.
    Zhikol OA, Shishkin OV (2012) Int J Quantum Chem 112:3008–3017CrossRefGoogle Scholar
  54. 54.
    Zhikol OA, Shishkin OV, Lyssenko KA, Leszczynski J (2005) J Chem Phys 122:144104–144108CrossRefGoogle Scholar
  55. 55.
    Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354CrossRefGoogle Scholar
  56. 56.
    van der Avoird A, Podeszwa R, Szalewicz K, Leforestier C, van Harrevelt R, Bunker PR, Schnell M, von Helden G, Meijer G (2010) Phys Chem Chem Phys 12:8219–8240CrossRefGoogle Scholar
  57. 57.
    Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893CrossRefGoogle Scholar
  58. 58.
    Sinnokrot MO, Sherrill CD (2004) J Phys Chem A 108:10200–10207CrossRefGoogle Scholar
  59. 59.
    Tauer TP, Sherrill CD (2005) J Phys Chem A 109:10475–10478CrossRefGoogle Scholar
  60. 60.
    Sherrill CD, Takatani T, Hohenstein EG (2009) J Phys Chem A 113:10146–10159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroitUSA
  2. 2.Univ. Paris 06, UMR 7616 Laboratoire de Chimie ThéoriqueUPMC, Sorbonne UniversitésParisFrance
  3. 3.UMR 7616, Laboratoire de Chimie ThéoriqueCNRSParisFrance
  4. 4.Research Computing CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations