Advertisement

Heats of formation of the amino acids re-examined by means of W1-F12 and W2-F12 theories

  • Amir Karton
  • Li-Juan Yu
  • Manoj K. Kesharwani
  • Jan M. L. Martin
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection

Abstract

We have obtained accurate heats of formation for the twenty natural amino acids by means of explicitly correlated high-level thermochemical procedures. Our best theoretical heats of formation, obtained by means of the ab initio W1-F12 and W2-F12 thermochemical protocols, differ significantly (RMSD = 2.3 kcal/mol, maximum deviation 4.6 kcal/mol) from recently reported values using the lower-cost G3(MP2) method. With the more recent G4(MP2) procedure, RMSD drops slightly to 1.8 kcal/mol, while full G4 theory offers a more significant improvement to 0.72 kcal/mol (max. dev. 1.4 kcal/mol for glutamine). The economical G4(MP2)-6X protocol performs equivalently at RMSD = 0.71 kcal/mol (max. dev. 1.6 kcal/mol for arginine and glutamine). Our calculations are in excellent agreement with experiment for glycine, alanine and are in excellent agreement with the recent revised value for methionine, but suggest revisions by several kcal/mol for valine, proline, phenylalanine, and cysteine, in the latter case confirming a recent proposed revision. Our best heats of formation at 298 K (\(\Delta H_{f,298}^{\circ }\)) are as follows: at the W2-F12 level: glycine −94.1, alanine \(-\)101.5, serine \(-\)139.2, cysteine \(-\)94.5, and methionine \(-\)102.4  kcal/mol, and at the W1-F12 level: arginine \(-\)98.8, asparagine \(-\)146.5, aspartic acid \(-\)189.6, glutamine \(-\)151.0, glutamic acid \(-\)195.5, histidine \(-\)69.8, isoleucine \(-\)118.3, leucine \(-\)118.8, lysine \(-\)110.0, phenylalanine \(-\)76.9, proline \(-\)92.8, threonine \(-\)149.0, and valine \(-\)113.6 kcal/mol. For the two largest amino acids, an average over G4, G4(MP2)-6X, and CBS-QB3 yields best estimates of \(-\)58.4 kcal/mol for tryptophan, and of \(-\)117.5 kcal/mol for tyrosine. For glycine, we were able to obtain a “quasi-W4” result corresponding to \(\hbox {TAE}_e\) = 968.1, \(\hbox {TAE}_0\) = 918.6, \(\Delta H_{f,298}^{\circ }=-90.0\), and \(\Delta H_{f,298}^{\circ }=-94.0\) kcal/mol.

Keywords

Thermochemistry Amino acids Explicitly correlated methods Density functional theory Ab initio 

Notes

Acknowledgments

JMLM is the Baroness Thatcher Professor of Chemistry at the Weizmann Institute of Science and acknowledges partial financial support from the Lise Meitner-Minerva Center for Computational Quantum Chemistry and the Helen and Martin Kimmel Center for Molecular Design. This research was supported in part by the Weizmann AERI (Alternative Energy Research Initiative) and by a startup grant from the University of North Texas from which the Martin group Linux cluster was purchased. The authors would like to thank Dr. David Hrovat for assistance with procurement and management of the latter. A.K. is the recipient of an Australian Research Council (ARC) Discovery Early Career Researcher Award (project number: DE140100311). We also acknowledge the generous allocation of computing time from the National Computational Infrastructure (NCI) National Facility and the support of iVEC through the use of advanced computing resources located at iVEC@UWA.

Supplementary material

214_2014_1483_MOESM1_ESM.pdf (177 kb)
Supplementary material 1 (f 177 KB)

References

  1. 1.
    Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4CrossRefGoogle Scholar
  2. 2.
    Kong L, Bischoff FA, Valeev E (2012) Chem Rev 112:75CrossRefGoogle Scholar
  3. 3.
    Ten-no S, Noga J (2012) WIREs Comput Mol Sci 2:114CrossRefGoogle Scholar
  4. 4.
    Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1079CrossRefGoogle Scholar
  5. 5.
    Quinn JR, Zimmerman SC, Del Bene JE, Shavitt I (2007) J Am Chem Soc 129:934CrossRefGoogle Scholar
  6. 6.
    Distasio RA Jr, Steele RP, Rhee YM, Shao Y, Head-Gordon M (2007) J Comp Chem 28:839CrossRefGoogle Scholar
  7. 7.
    Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595CrossRefGoogle Scholar
  8. 8.
    Valdes H, Pluháčková K, Pitonák M, Řezáč J, Hobza P (2008) Phys Chem Chem Phys 10:2747CrossRefGoogle Scholar
  9. 9.
    Valdes H, Pluháčková K, Hobza P (2009) J Chem Theory Comput 5:2248CrossRefGoogle Scholar
  10. 10.
    Jiang J, Wu Y, Wang Z-X, Wu C (2010) J Chem Theory Comput 6:1199CrossRefGoogle Scholar
  11. 11.
    Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M (2011) Phys Rev Lett 106:118102CrossRefGoogle Scholar
  12. 12.
    Bokatzian-Johnson SS, Stover ML, Dixon DA (2012) J Phys Chem B 116:14844CrossRefGoogle Scholar
  13. 13.
    Goerigk L, Karton A, Martin JML, Radom L (2013) Phys Chem Chem Phys 15:7028CrossRefGoogle Scholar
  14. 14.
    Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. Palgrave-Macmillan, New YorkGoogle Scholar
  15. 15.
    Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Santos AFLOM, Roux MV, Foces-Foces C, Notario R, Guzman-Majia R, Juaristi E (2010) J Phys Chem B 114:16471CrossRefGoogle Scholar
  16. 16.
    Notario R, Roux MV, Foces-Foces C, da Silva MAVR, da Silva MDMCR, Santos AFLOM, Guzman-Meja R, Juaristi E (2011) J Phys Chem B 115:9401CrossRefGoogle Scholar
  17. 17.
    Stover ML, Jackson VE, Matus MH, Adams MA, Cassady CJ, Dixon DA (2012) J Phys Chem B 116:2905CrossRefGoogle Scholar
  18. 18.
    Roux MV, Notario R, Segura M, Chickos JS, Liebman JF (2012) J Phys Org Chem 25:916CrossRefGoogle Scholar
  19. 19.
    Roux MV, Foces-Foces C, Notario R, da Silva MAVR, da Silva MDMC, Santos AFLOM, Juaristi E (2010) J Phys Chem B 114:10530CrossRefGoogle Scholar
  20. 20.
    Brás NF, Perez MAS, Fernandes PA, Silva PJ, Ramos MJ (2011) J Chem Theory Comput 7:3898CrossRefGoogle Scholar
  21. 21.
    Ramabhadran RO, Sengupta A, Raghavachari K (2013) J Phys Chem A 117:4973CrossRefGoogle Scholar
  22. 22.
    Jaeger HM, Schaefer HF III, Demaison J, Császár AG, Allen WD (2010) J Chem Theory Comput 6:3066CrossRefGoogle Scholar
  23. 23.
    Wilke JJ, Lind MC, Schaefer HF III, Császár AG, Allen WD (2009) J Chem Theory Comput 5:1511CrossRefGoogle Scholar
  24. 24.
    Balabin RM (2011) Comp Theor Chem 965:15CrossRefGoogle Scholar
  25. 25.
    Balabin RM (2009) Chem Phys Lett 479:195CrossRefGoogle Scholar
  26. 26.
    Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge Molecular Science, CambridgeCrossRefGoogle Scholar
  27. 27.
    Shavitt I (1993) The history and evolution of Gaussian basis sets. Isr J Chem 33:357CrossRefGoogle Scholar
  28. 28.
    Bartlett RJ, Cole SJ, Purvis GD, Ermler WC, Hsieh HC, Shavitt I (1987) J Chem Phys 87:6579CrossRefGoogle Scholar
  29. 29.
    Shavitt I (1985) Tetrahedron 41:1531 CrossRefGoogle Scholar
  30. 30.
    Comeau DC, Shavitt I, Jensen P, Bunker PR (1989) J Chem Phys 90:6491CrossRefGoogle Scholar
  31. 31.
    Karton A, Martin JML (2012) J Chem Phys 136:124114CrossRefGoogle Scholar
  32. 32.
    Karton A, Daon S, Martin JML (2011) Chem Phys Lett 510:165CrossRefGoogle Scholar
  33. 33.
    Curtiss LA, Redfern PC, Raghavachari K (2011) WIREs Comput Mol Sci 1:810CrossRefGoogle Scholar
  34. 34.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  36. 36.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  37. 37.
    Dunning TH (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  38. 38.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  39. 39.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, Revision D01, Gaussian Inc, Wallingford CT. See also: URL: http://www.gaussian.com
  41. 41.
    Werner H-J, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G et al (2012) Molpro 2012.1, University College Cardiff Consultants Limited: Cardiff U.K. See also: http://www.molpro.net.
  42. 42.
    Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102CrossRefGoogle Scholar
  43. 43.
    Hill JG, Peterson KA, Knizia G, Werner H-J (2009) J Chem Phys 131:194105CrossRefGoogle Scholar
  44. 44.
    Feller D, Peterson KA (2013) J Chem Phys 139:084110CrossRefGoogle Scholar
  45. 45.
    Ten-no S (2004) Chem Phys Lett 398:56CrossRefGoogle Scholar
  46. 46.
    Werner H-J, Adler TB, Manby FR (2007) J Chem Phys 126:164102CrossRefGoogle Scholar
  47. 47.
    Knizia G, Werner H-J (2008) J Chem Phys 128:154103CrossRefGoogle Scholar
  48. 48.
    Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106CrossRefGoogle Scholar
  49. 49.
    Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104CrossRefGoogle Scholar
  50. 50.
    Martin JML, de Oliveira G (1999) J Chem Phys 111:1843CrossRefGoogle Scholar
  51. 51.
    Peterson KA, Dunning TH (2002) J Chem Phys 117:10548CrossRefGoogle Scholar
  52. 52.
    Douglas M, Kroll NM (1974) Ann Phys 82:89CrossRefGoogle Scholar
  53. 53.
    Heß BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  54. 54.
    de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48CrossRefGoogle Scholar
  55. 55.
    Ruscic B, Pinzon RE, Morton ML, von Laszewski G, Bittner S, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979CrossRefGoogle Scholar
  56. 56.
    Ruscic B (2004) Encyclopedia of Science and Technology (2005 Yearbook of Science and Technology). McGraw-Hill, New York, p 3Google Scholar
  57. 57.
    Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su M-C, Sutherland JW, Michael JV (2006) J Phys Chem A 110:6592CrossRefGoogle Scholar
  58. 58.
    Stevens WR, Ruscic B, Baer T (2010) J Phys Chem A 114:13134CrossRefGoogle Scholar
  59. 59.
    Ruscic B, Feller D, Peterson KA (2014) Theor Chem Acc 133:1415. doi: 10.1007/s00214-013-1415-z
  60. 60.
    Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics, Hemisphere Publishing Corp.: New York. http://www.codata.org/resources/databases/key1.html
  61. 61.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703CrossRefGoogle Scholar
  62. 62.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650CrossRefGoogle Scholar
  63. 63.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108CrossRefGoogle Scholar
  64. 64.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105CrossRefGoogle Scholar
  65. 65.
    Chan B, Deng J, Radom L (2011) J Chem Theory Comput 7:112CrossRefGoogle Scholar
  66. 66.
    Curtiss LA, Redfern PC, Raghavachari K (2005) J Chem Phys 123:124107CrossRefGoogle Scholar
  67. 67.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822CrossRefGoogle Scholar
  68. 68.
    Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108CrossRefGoogle Scholar
  69. 69.
    Bak KL, Jørgensen P, Olsen J, Helgaker T, Gauss J (2000) Chem Phys Lett 317:116CrossRefGoogle Scholar
  70. 70.
    Boese AD, Oren M, Atasoylu O, Martin JML, Kallay M, Gauss J (2004) J Chem Phys 120:4129Google Scholar
  71. 71.
    Stanton JF (1997) Chem Phys Lett 281:130CrossRefGoogle Scholar
  72. 72.
    Karton A, Taylor PR, Martin JML (2007) J Chem Phys 127:064104CrossRefGoogle Scholar
  73. 73.
    Harding ME, Vázquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2008) J Chem Phys 128:114111 and references thereinCrossRefGoogle Scholar
  74. 74.
    Fogueri UR, Kozuch S, Karton A, Martin JML (2013) Theor Chem Acc 132:1291CrossRefGoogle Scholar
  75. 75.
    Karton A, Kaminker I, Martin JML (2009) J Phys Chem A 113:7610CrossRefGoogle Scholar
  76. 76.
    Harding ME, Vázquez J, Gauss J, Stanton JF, Kállay M (2011) J Chem Phys 135:044513CrossRefGoogle Scholar
  77. 77.
    Ramabhadran RO, Raghavachari K (2011) J Chem Theory Comput 7:2094CrossRefGoogle Scholar
  78. 78.
    Ramabhadran RO, Raghavachari K (2012) J Phys Chem A 116:7531CrossRefGoogle Scholar
  79. 79.
    Afeefy HY, Liebman JF, Stein SE “Neutral Thermochemical Data” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds Linstrom PJ, Mallard WG, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov. Retrieved October 22, 2013
  80. 80.
    (2012) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Boca Raton 2013Google Scholar
  81. 81.
    Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Phys Chem Chem Phys 15:10094–10111. The absolute ZPVE for the lowest-energy conformer is not given explicitly in the paper, but is 49.438 kcal/mol: Puzzarini C, personal communication to authors (January, 2014).Google Scholar
  82. 82.
    Dunham JL (1932) Phys Rev 41:721CrossRefGoogle Scholar
  83. 83.
    Del Bene JE, Aue DH (1992) Shavitt I 114:1631Google Scholar
  84. 84.
    Grev RS, Janssen CL, Schaefer HF (1991) J Chem Phys 95:5128CrossRefGoogle Scholar
  85. 85.
    Schuurman MS, Allen WD, Schaefer HF (2005) J Comput Chem 26:1106CrossRefGoogle Scholar
  86. 86.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theor Comput 6:2872. http://comp.chem.umn.edu/freqscale/index.html Google Scholar
  87. 87.
    Csonka G, Ruzsinszky A, Perdew JP (2005) J Phys Chem A 109:6779CrossRefGoogle Scholar
  88. 88.
    Irikura KK, Johnson RD, Kacker RN, Kessel R (2009) J Chem Phys 130:114102CrossRefGoogle Scholar
  89. 89.
    Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) J Phys Chem A 108:9213CrossRefGoogle Scholar
  90. 90.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683. http://groups.chem.usyd.edu.au/radom/More/ScaleFactor.html
  91. 91.
    Karton A, Ruscic B, Martin JML (2007) J Mol Struct Theochem 811:345CrossRefGoogle Scholar
  92. 92.
    Pfeiffer F, Rauhut G, Feller D, Peterson KA (2013) J Chem Phys 138:044311CrossRefGoogle Scholar
  93. 93.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  94. 94.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  95. 95.
    Kozuch S, Gruzman D, Martin JML (2011) J Phys Chem C 114:20801, Table S-16.Google Scholar
  96. 96.
    Gruzman D, Karton A, Martin JML (2009) J Phys Chem A 113:11974CrossRefGoogle Scholar
  97. 97.
    Dorofeeva OV, Ryzhova ON (2009) J Chem Thermodyn 41:433CrossRefGoogle Scholar
  98. 98.
    CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau TC, Jonsson D, Juslius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Simmons C, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJA, Jørgensen P, Olsen J), and ECP routines by Mitin AV, van Wüllen C. For the current version. http://www.cfour.de
  99. 99.
    Gauss J, Tajti A, Kállay M, Stanton JF, Szalay PG (2006) J Chem Phys 125:144111CrossRefGoogle Scholar
  100. 100.
    Ling S, Yu W, Huang Z, Lin Z, Haranczyk M, Gutowski M (2006) J Phys Chem A 110:12282–12291CrossRefGoogle Scholar
  101. 101.
    Chen M, Huang Z, Lin Z (2005) J Mol Struct Theochem 719:153–158CrossRefGoogle Scholar
  102. 102.
    Chen M, Lin Z (2007) J Chem Phys 127:154314CrossRefGoogle Scholar
  103. 103.
    Meng L, Lin Z (2011) Comp Theor Chem 976:42–50CrossRefGoogle Scholar
  104. 104.
    Pang R, Guo M, Ling S, Lin Z (2013) Comp Theory Chem 1020:14–21CrossRefGoogle Scholar
  105. 105.
    Huang Z, Yu W, Lin Z (2006) J Mol Struct Theochem 801:7–20CrossRefGoogle Scholar
  106. 106.
    Dokmaisrijan S, Lee VS, Nimmanpipug P (2010) J Mol Struct Theochem 953:28–38CrossRefGoogle Scholar
  107. 107.
    Boeckx B, Maes G (2012) J Phys Chem B 116:12441–12449CrossRefGoogle Scholar
  108. 108.
    Huang Z, Yu W, Lin Z (2006) J Mol Struct Theochem 758:195–202CrossRefGoogle Scholar
  109. 109.
    Czinki E, Császár AG (2003) Chem Eur J 9:1008–1019CrossRefGoogle Scholar
  110. 110.
    Szidarovszky T, Czakó G, Császár AG (2009) Mol Phys 107:761–775CrossRefGoogle Scholar
  111. 111.
    Huang Z, Lin Z (2005) J. Phys. Chem. A 109:2656. MP2/6-311++G(d, p) total energies for 45 lowest conformers, with B3LYP/6-311G* zero-point energies.Google Scholar
  112. 112.
    Zhang M, Huang Z, Lin Z (2005) J Chem Phys 122: 134313. Lowest 36 conformers, MP2/6-311G(2df, p)//B3LYP/6-311++G(d, p) with zero-point energy from B3LYP/6-311++G(d, p).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThe University of Western AustraliaPerthAustralia
  2. 2.Department of Organic ChemistryWeizmann Institute of ScienceReḥovotIsrael
  3. 3.Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM)University of North TexasDentonUSA

Personalised recommendations