Effects of the second hydration shell on excited-state multiple proton transfer: dynamics simulations of 7-azaindole:(H2O)1–5 clusters in the gas phase

Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection

Abstract

Dynamics of the multiple excited-state proton transfer (ESPT) in clusters of 7-azaindole with up to five water molecules was investigated with quantum chemical methods. The ultrafast excited-state dynamics triggered by photoexcitation was simulated with the algebraic diagrammatic construction to the second-order scheme. Multiple ESPT through a hydrogen-bonded network is observed in the 100-fs scale. The probability of tautomerization is anti-correlated with the maximum free energy barrier in the excited state. An increasing number of water molecules tends to reduce the barrier by strengthening the hydrogen-bonded network. Barrierless reactions are found already for clusters with four waters. In structures presenting double hydrogen bond circuits, proton transfer happens mostly through the internal circuit by triple proton transfer. The overall role of the second hydration shell is of stabilizing the network, facilitating the proton transfer in the internal circuit. Proton transfers involving the second hydration shell were observed, but with small probability of occurrence. The proton-transfer processes tend to be synchronous, with two of them occurring within 10–15 fs apart.

Keywords

On-the-fly dynamics simulation Excited-state proton transfer Excited-state tautomerization Water-assisted proton transfer Hydrogen bond rearrangement 7-Azaindole ADC(2) 

Notes

Acknowledgments

The authors wish to thank the Thailand Research Fund (MRG5480294 and TRG5680098) for financial support. K. Kerdpol and R. Daengngern thank the Science Achievement Scholarship of Thailand (SAST), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.

Supplementary material

214_2014_1480_MOESM1_ESM.pdf (2.6 mb)
Ground-state structures of the 7AI(H2O)n=1,1+1,2 complexes; snapshots of trajectories featuring HBR and tautomerization; time evolution of average potential energies and average bond lengths; average relative energies along the reaction pathways; relative energies of the three ground-state 7AI(H2O)3 isomers; Cartesian coordinates of all investigated complexes. (PDF 2693 kb)

References

  1. 1.
    Hynes JT, Klinman JP, Limbach HH, Schowen RL (eds) (2007) Hydrogen-transfer reactions: biological aspects I–II. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–4Google Scholar
  2. 2.
    Chang SM, Tzeng YJ, Wu SY, Li KY, Hsueh KL (2005) Thin Solid Films 477:38CrossRefGoogle Scholar
  3. 3.
    Rey R, Moller KB, Hynes JT (2002) J Phys Chem A 106:11993CrossRefGoogle Scholar
  4. 4.
    Arnaut LG, Formosinho SJ (1993) J Photochem Photobiol A 75:1CrossRefGoogle Scholar
  5. 5.
    Formosinho SJ, Arnaut LG (1993) J Photochem Photobiol A 75:21CrossRefGoogle Scholar
  6. 6.
    Gebicki J, Bally T (1997) Acc Chem Res 30:477CrossRefGoogle Scholar
  7. 7.
    Freier E, Wolf S, Gerwert K (2011) Proc Natl Acad Sci USA 108:11435CrossRefGoogle Scholar
  8. 8.
    Zewail AH (2000) Pure Appl Chem 72:2219CrossRefGoogle Scholar
  9. 9.
    Taylor CA, El-Bayoumi MA, Kasha M (1969) Proc Natl Acad Sci USA 63:253CrossRefGoogle Scholar
  10. 10.
    Yokoyama H, Watanabe H, Omi T, Ishiuchi S, Fujii M (2001) J Phys Chem A 105:9366CrossRefGoogle Scholar
  11. 11.
    Nakajima A, Hirano M, Hasumi R, Kaya K, Watanabe H, Carter CC, Williamson JM, Miller TA (1997) J Phys Chem A 101:392CrossRefGoogle Scholar
  12. 12.
    Smirnov AS, English DS, Rich RL, Lane J, Teyton L, Schwabacher AW, Luo S, Thornburg RW, Petrich JW (1997) J Phys Chem B 101:2758CrossRefGoogle Scholar
  13. 13.
    Negrerie M, Gai F, Bellefeuille SM, Petrich JW (1991) J Phys Chem 95:8663CrossRefGoogle Scholar
  14. 14.
    Negrerie M, Bellefeuille SM, Whitham S, Petrich JW, Thornburg RW (1990) J Am Chem Soc 112:7419CrossRefGoogle Scholar
  15. 15.
    Daengngern R, Kungwan N, Wolschann P, Aquino AJA, Lischka H, Barbatti M (2011) J Phys Chem A 115:14129CrossRefGoogle Scholar
  16. 16.
    Young JW, Pratt DW (2011) J Phys Chem 135:084301CrossRefGoogle Scholar
  17. 17.
    Duong MPT, Kim Y (2010) J Phys Chem A 114:3403CrossRefGoogle Scholar
  18. 18.
    Sakota K, Jouvet C, Dedonder C, Fujii M, Sekiya H (2010) J Phys Chem A 114:11161CrossRefGoogle Scholar
  19. 19.
    Sakota K, Kageura Y, Sekiya H (2008) J Chem Phys 129:054303CrossRefGoogle Scholar
  20. 20.
    Kwon O-H, Zewail AH (2007) Proc Natl Acad Sci USA 104:8703CrossRefGoogle Scholar
  21. 21.
    Sakota K, Inoue N, Komoto Y, Sekiya H (2007) J Phys Chem A 111:4596CrossRefGoogle Scholar
  22. 22.
    Sakota K, Komoto Y, Nakagaki M, Ishikawa W, Sekiya H (2007) Chem Phys Lett 435:1CrossRefGoogle Scholar
  23. 23.
    Takeuchi S, Tahara T (2007) Proc Natl Acad Sci USA 104:5285CrossRefGoogle Scholar
  24. 24.
    Hara A, Sakota K, Nakagaki M, Sekiya H (2005) Chem Phys Lett 407:30CrossRefGoogle Scholar
  25. 25.
    Catalan J, Perez P, del Valle JC, de Paz JLG, Kasha M (2004) Proc Natl Acad Sci USA 101:419CrossRefGoogle Scholar
  26. 26.
    Waluk J (2003) Acc Chem Res 36:832CrossRefGoogle Scholar
  27. 27.
    Folmer DE, Wisniewski ES, Stairs JR, Castleman AW Jr (2000) J Phys Chem A 104:10545CrossRefGoogle Scholar
  28. 28.
    Catalán J, del Valle JC, Kasha M (1999) Proc Natl Acad Sci USA 96:8338CrossRefGoogle Scholar
  29. 29.
    Folmer DE, Wisniewski ES, Hurley SM, Castleman AW Jr (1999) Proc Natl Acad Sci USA 96:12980CrossRefGoogle Scholar
  30. 30.
    Mente S, Maroncelli M (1998) J Phys Chem A 102:3860CrossRefGoogle Scholar
  31. 31.
    Takeuchi S, Tahara T (1998) J Phys Chem A 102:7740CrossRefGoogle Scholar
  32. 32.
    Huang Y, Arnold S, Sulkes M (1996) J Phys Chem 100:4734CrossRefGoogle Scholar
  33. 33.
    Chou P-T, Wei C-Y, Chang C-P, Kuo M-S (1995) J Phys Chem 99:11994CrossRefGoogle Scholar
  34. 34.
    Ilich P (1995) J Mol Struct 354:37CrossRefGoogle Scholar
  35. 35.
    Chen Y, Gai F, Petrich JW (1994) Chem Phys Lett 222:329CrossRefGoogle Scholar
  36. 36.
    Chen Y, Rich RL, Gai F, Petrich JW (1993) J Phys Chem 97:1770CrossRefGoogle Scholar
  37. 37.
    Chou PT, Martinez ML, Cooper WC, Collins ST, McMorrow DP, Kasha M (1992) J Phys Chem 96:5203CrossRefGoogle Scholar
  38. 38.
    Moog RS, Maroncelli M (1991) J Phys Chem 95:10359CrossRefGoogle Scholar
  39. 39.
    Chau P-T (2001) J Chin Chem Soc 48:651Google Scholar
  40. 40.
    Chaban GM, Gordon MS (1999) J Phys Chem A 103:185CrossRefGoogle Scholar
  41. 41.
    Gordon MS (1996) J Phys Chem 100:3974CrossRefGoogle Scholar
  42. 42.
    Fang H, Kim Y (2011) J Chem Theory Comput 7:642CrossRefGoogle Scholar
  43. 43.
    Pino GA, Alata I, Dedonder C, Jouvet C, Sakota K, Sekiya H (2011) Phys Chem Chem Phys 13:6325CrossRefGoogle Scholar
  44. 44.
    Kina D, Nakayama A, Noro T, Taketsugu T, Gordon MS (2008) J Phys Chem A 112:9675CrossRefGoogle Scholar
  45. 45.
    Fernandez-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2001) J Chem Phys 114:7518CrossRefGoogle Scholar
  46. 46.
    Yu X, Yamazaki S, Taketsugu T (2012) J Phys Chem A 116:10566CrossRefGoogle Scholar
  47. 47.
    Daengngern R, Kerdpol K, Kungwan N, Hannongbua S, Barbatti M (2013) J Photochem Photobiol A 266:28CrossRefGoogle Scholar
  48. 48.
    Hättig C (2005) Adv Quantum Chem 50:37CrossRefGoogle Scholar
  49. 49.
    Hättig C (2003) J Chem Phys 118:7751CrossRefGoogle Scholar
  50. 50.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  51. 51.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  52. 52.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  53. 53.
    Casadesus R, Moreno M, Lluch JM (2003) Chem Phys 290:319CrossRefGoogle Scholar
  54. 54.
    Trofimov AB, Schirmer J (1995) J Phys B At Mol Opt Phys 28:2299CrossRefGoogle Scholar
  55. 55.
    Schirmer J (1982) Phys Rev A 26:2395CrossRefGoogle Scholar
  56. 56.
    Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623CrossRefGoogle Scholar
  57. 57.
    Hättig C, Weigend F (2000) J Chem Phys 113:5154CrossRefGoogle Scholar
  58. 58.
    Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M, Lischka H (2014) WIREs Comput Mol Sci 4:26CrossRefGoogle Scholar
  59. 59.
    Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Crespo-Otero R, Pittner J, Persico M, Lischka H (2013) NEWTON-X: a package for Newtonian dynamics close to the crossing seam. www.newtonx.org
  60. 60.
    Swope WC, Andersen HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637CrossRefGoogle Scholar
  61. 61.
    Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  62. 62.
    Tanner C, Manca C, Leutwyler S (2003) Science 302:1736CrossRefGoogle Scholar
  63. 63.
    Kungwan N, Daengngern R, Piansawan T, Hannongbua S, Barbatti M (2013) Theor Chem Acc 132:1CrossRefGoogle Scholar
  64. 64.
    Kungwan N, Plasser F, Aquino AJA, Barbatti M, Wolschann P, Lischka H (2012) Phys Chem Chem Phys 14:9016CrossRefGoogle Scholar
  65. 65.
    Barbatti M, Aquino AJA, Lischka H, Schriever C, Lochbrunner S, Riedle E (2009) Phys Chem Chem Phys 11:1406CrossRefGoogle Scholar
  66. 66.
    Dewar MJS (1984) J Am Chem Soc 106:209CrossRefGoogle Scholar
  67. 67.
    Lawrenz M, Baron R, McCammon JA (2009) J Chem Theory Comput 5:1106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations