A Markov chain approach to simulate Atomic Layer Deposition chemistry and transport inside nanostructured substrates

Regular Article
Part of the following topical collections:
  1. Modeling Chemical Vapor Deposition and Atomic Layer Deposition

Abstract

In this work, we present a new theoretical framework to model the transport and surface chemistry under molecular (Knudsen) flow. Our approach is based on casting the transport inside nanostructures as a single-particle discrete Markov chain process. One of the advantages of this approach is that it allows us to decouple the complexity of the surface chemistry from the transport model, thus allowing its application under general surface chemistry conditions, including atomic layer deposition (ALD) and chemical vapor deposition (CVD). Our model also allows us to determine statistical information of the trajectory of individual molecules, such as the average interaction time or the number of wall collisions for molecules entering the nanostructures as well as to track the relative contributions to thin-film growth of different independent reaction pathways at each point of the feature. This offers a straightforward way of incorporating into ALD simulations non-ideal surface processes, such as parasitic CVD or surface recombination. By studying the asymptotic behavior of the Markov chain process, we were also able to establish a direct link between ballistic models, kinetic Monte Carlo simulations, and continuous models based on the use of the diffusion equation under Knudsen conditions. Finally, we show that, under certain approximations, the coverage profile inside a nanostructure under ALD conditions is controlled by the total exposure, and not by the details of the surface flux dependence with time during the exposure, as long as the reaction probabilities are pressure independent.

Keywords

Atomic Layer Deposition Chemical Vapor Deposition Ballistic transport Nanostructured features Conformality Step-coverage 

Notes

Acknowledgments

This work was sponsored in part by the U.S. DOE, EERE-Industrial Technologies Program under FWP-4902A. JWE was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059. An implementation of the Markov chain model of ballistic transport will be made available at http://smart.es.anl.gov/machball.html.

Supplementary material

214_2014_1465_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1731 kb)

References

  1. 1.
    Tisone TC, Bindell JB (1974) J Vac Sci Technol 11(1):72–76. doi:10.1116/1.1318664 CrossRefGoogle Scholar
  2. 2.
    Raupp GB, Cale TS (1989) Chem Mater 1(2):207–214. doi:10.1021/cm00002a009 CrossRefGoogle Scholar
  3. 3.
    Hasper A, Holleman J, Middelhoek J, Kleijn CR, Hoogendoorn CJ (1991) J Electrochem Soc 138(6):1728–1738CrossRefGoogle Scholar
  4. 4.
    Islamraja MM, Cappelli MA, McVittie JP, Saraswat KC (1991) J Appl Phys 70(11):7137–7140. doi:10.1063/1.349797 CrossRefGoogle Scholar
  5. 5.
    Yun JH, Park SK (1995) Jpn J Appl Phys Part 1-Regul Pap Short Notes Rev Pap 34(6A):3216–3226CrossRefGoogle Scholar
  6. 6.
    Cale TS, Raupp GB (1990) J Vac Sci Technol, B 8(6):1242–1248CrossRefGoogle Scholar
  7. 7.
    Cale TS, Raupp GB, Gandy TH (1990) J Appl Phys 68(7):3645–3652. doi:10.1063/1.346328 CrossRefGoogle Scholar
  8. 8.
    Yanguas-Gil A, Elam JW (2012) Chem Vap Depos 18(1–3):46–52. doi:10.1002/cvde.201106938 CrossRefGoogle Scholar
  9. 9.
    Gordon RG, Hausmann D, Kim E, Shepard J (2003) Chem Vap Depos 9(2):73–78CrossRefGoogle Scholar
  10. 10.
    Kim J-Y, Ahn J-H, Kang S-W, Kim J-H (2007) J Appl Phys 101(7):073502CrossRefGoogle Scholar
  11. 11.
    Kim JY, Kim JH, Ahn JH, Park PK, Kang SW (2007) J Electrochem Soc 154(12):H1008–H1013. doi:10.1149/1.2789802 CrossRefGoogle Scholar
  12. 12.
    Dendooven J, Deduytsche D, Musschoot J, Vanmeirhaeghe RL, Detavernier C (2009) J Electrochem Soc 156(4):P63–P67. doi:10.1149/1.3072694 CrossRefGoogle Scholar
  13. 13.
    Yanguas-Gil A, Kumar N, Yang Y, Abelson JR (2009) J Vac Sci Technol, A 27(5):1244–1248. doi:10.1116/1.3207746 CrossRefGoogle Scholar
  14. 14.
    Yanguas-Gil A, Yang Y, Kumar N, Abelson JR (2009) J Vac Sci Technol, A 27(5):1235–1243. doi:10.1116/1.3207745 CrossRefGoogle Scholar
  15. 15.
    Knoops HCM, Langereis E, van de Sanden MCM, Kessels WMM (2010) J Electrochem Soc 157(12):G241–G249. doi:10.1149/1.3491381 CrossRefGoogle Scholar
  16. 16.
    Knoops HCM, Elam JW, Libera JA, Kessels WMM (2011) Chem Mater 23(9):2381–2387. doi:10.1021/cm2001144 CrossRefGoogle Scholar
  17. 17.
    Klaus JW, Ferro SJ, George SM (2000) Thin Solid Films 360(1–2):145–153CrossRefGoogle Scholar
  18. 18.
    Ritala M, Leskela M, Niinisto L, Haussalo P (1993) Chem Mater 5(8):1174–1181CrossRefGoogle Scholar
  19. 19.
    Kukli K, Ritala M, Matero R, Leskela M (2000) J Cryst Growth 212(3–4):459–468. doi:10.1016/s0022-0248(00)00331-6 CrossRefGoogle Scholar
  20. 20.
    Matero R, Rahtu A, Ritala M, Leskelä M, Sajavaara T (2000) Thin Solid Films 368(1):1–7Google Scholar
  21. 21.
    Rey JC, Chen LY, McVittie JP, Saraswat KC (1991) J Vac Sci Technol a-Vac Surf Films 9(3):1083–1087CrossRefGoogle Scholar
  22. 22.
    Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Chem Mater 15(18):3507–3517CrossRefGoogle Scholar
  23. 23.
    Malek K, Coppens MO (2003) J Chem Phys 119(5):2801–2811. doi:10.1063/1.1584652 CrossRefGoogle Scholar
  24. 24.
    O’Hanlon JF (1980) A user’s guide to vacuum technology. Wiley-Interscience, Wiley, New YorkGoogle Scholar
  25. 25.
    Coronell DG, Jensen KF (1992) J Electrochem Soc 139(8):2264–2273CrossRefGoogle Scholar
  26. 26.
    Shimogaki Y, Saito T, Tadokoro F, Komiyama H (1991) J Phys IV 2(C2):95–102.doi:10.1051/jp4:1991211 Google Scholar
  27. 27.
    Sell B, Sanger A, Schulze-Icking G, Pomplun K, Krautschneider W (2003) Thin Solid Films 443(1–2):97–107. doi:10.1016/s0040-6090(03)00922-2 CrossRefGoogle Scholar
  28. 28.
    Jain MK, Cale TS, Gandy TH (1993) J Electrochem Soc 140(1):242–247. doi:10.1149/1.2056096 CrossRefGoogle Scholar
  29. 29.
    Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Goodman R (1988) Introduction to stochastic models. Benjamin/Cummings, Menlo ParkGoogle Scholar
  31. 31.
    Clausing P (1971) J Vac Sci Technol 8(5):636–646CrossRefGoogle Scholar
  32. 32.
    Gut A (1988) Stopped random walks: limit theorems and applications. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  1. 1.Energy Systems DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations