σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3, and H

  • Janet E. Del Bene
  • Ibon Alkorta
  • José Elguero
Regular Article
Part of the following topical collections:
  1. Shavitt Memorial Festschrift Collection


Ab initio MP2/aug’-cc-pVTZ calculations have been carried out on complexes H2XPs:PtCX, for X = F, Cl, OH, NC, CN, CCH, CH3, and H, in search of complexes stabilized by P···P pnicogen bonds. These intermolecular bonds arise when a pnicogen atom acts as a Lewis acid for complex formation. Three sets of equilibrium structures have been found on the H2XPs:PtCX potential surfaces. Conformation A complexes have P···P σ–σ pnicogen bonds, which involve the σ systems of both P atoms. Conformations B and C are stabilized by σ–π pnicogen bonds, which involve the σ system of H2XP and the π system of PCX. Binding energies of B and C complexes are similar and are greater than the binding energies of the A conformers. Charge transfer stabilizes A, B, and C conformers. In A complexes, the dominant charge transfer is from the lone pair of PCX to the antibonding σ*P–A orbital of PH2X, with A the atom of X directly bonded to P. For conformations B and C, the dominant charge transfer is from the P=C π orbital to the σ*P–A orbital of H2XP. Although the binding energies of these complexes do not correlate with the intermolecular P–P distances, both the charge-transfer energies and the equation-of-motion coupled cluster singles and doubles one-bond 31P–31P spin–spin coupling constants do correlate with the P–P distances. The largest coupling constants 1pJ(P–P) are found for complexes with conformation A, due to the nature of the σ–σ pnicogen bond and the dominance of the Fermi contact term. For a given X, 1pJ(P–P) values are ordered A > C > B.


Structures and binding energies Intermolecular interactions σ–σ and σ–π pnicogen bonds Charge-transfer energies 31P–31P EOM-CCSD spin–spin coupling constants 1pJ(P–P) 



This work was carried out with financial support from the Ministerio de Educación y Ciencia (Project No. CTQ2012-35513-C02-02) and Comunidad Autónoma de Madrid (Project MADRISOLAR2, ref S2009/PPQ1533). Thanks are given to the Ohio Supercomputer Center for its continued support and to the CTI (CSIC). This paper is dedicated in memory of Shi Shavitt, mentor, colleague, and friend.

Supplementary material

214_2014_1464_MOESM1_ESM.doc (783 kb)
Supplementary material 1 (DOC 783 kb)


  1. 1.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  2. 2.
    Solimannejad M, Gharabaghi M, Scheiner S (2011) SH···N and SH···P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134(1–6):024312CrossRefGoogle Scholar
  3. 3.
    Scheiner SA (2011) New noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. J Chem Phys 134(1–9):094315CrossRefGoogle Scholar
  4. 4.
    Scheiner S (2011) Effects of substituents upon the P···N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209CrossRefGoogle Scholar
  5. 5.
    Adhikari U, Scheiner S (2012) Substituent effects on Cl···N, S···N and P···N noncovalent bonds. J Phys Chem A 116:3487–3497CrossRefGoogle Scholar
  6. 6.
    Adhikari U, Scheiner S (2012) Sensitivity of pnicogen chalcogen halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  7. 7.
    Scheiner S (2011) Can two trivalent N atoms engage in a direct N···N noncovalent interaction? Chem Phys Lett 514:32–35CrossRefGoogle Scholar
  8. 8.
    Scheiner S (2011) Effects of multiple substitution upon the P···N noncovalent interaction. Chem Phys 387:79–84CrossRefGoogle Scholar
  9. 9.
    Scheiner S (2011) On the properties of X···N noncovalent interactions for first- second- and third-row x atoms. J Chem Phys 134(1–9):164313CrossRefGoogle Scholar
  10. 10.
    Adhikari U, Scheiner S (2011) Comparison of P···D (D = P, N) with other noncovalent bonds in molecular aggregates. J Chem Phys 135(1–10):184306CrossRefGoogle Scholar
  11. 11.
    Scheiner S, Adhikari U (2011) Abilities of different electron donors (d) to engage in a p d noncovalent interaction. J Phys Chem A 115:11101–11110CrossRefGoogle Scholar
  12. 12.
    Scheiner S (2011) Weak H-bonds: comparisons of CH···O to NH···O in proteins and PH···N to direct P···N interactions. Phys Chem Chem Phys 13:13860–13872CrossRefGoogle Scholar
  13. 13.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31P-31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187CrossRefGoogle Scholar
  14. 14.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2014) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731Google Scholar
  15. 15.
    Adhikari U, Scheiner S (2012) Effects of carbon chain substituents on the P···N noncovalent bond. Chem Phys Lett 536:30–33CrossRefGoogle Scholar
  16. 16.
    Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Pnicogen-hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li and Na). J Phys Chem A 116:2547–2553CrossRefGoogle Scholar
  17. 17.
    Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Concerted interaction between pnicogen and halogen bonds in XCl-FH2P-NH3 (X = F, OH, CN, NC and FCC). ChemPhysChem 13:1205–1212CrossRefGoogle Scholar
  18. 18.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2 X = F, Cl, CN, CH3, NC. J Phys Chem A 116:3056–3060CrossRefGoogle Scholar
  19. 19.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Homo- and heterochiral dimers (PHFX)2 X = Cl, CN, CH3, NC: To what extent do they differ? Chem Phys Lett 538:14–18CrossRefGoogle Scholar
  20. 20.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theor Comp 8:2320–2327CrossRefGoogle Scholar
  21. 21.
    An X-L, Li R, Li Q-Z, Liu X-F, Li W-Z, Cheng J-B (2012) Substitution cooperative and solvent effects on π pnicogen bonds in the FH2P and FH2As Complexes. J Mol Model 18:4325–4332CrossRefGoogle Scholar
  22. 22.
    Bauzá A, Quiñonero D, Deyà PM, Frontera A (2012) Pnicogen-π complexes: theoretical study and biological implications. Phys Chem Chem Phys 14:14061–14066CrossRefGoogle Scholar
  23. 23.
    Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2013) Exploring (NH2F)2, H2FP:NFH2 and (PH2F)2 potential surfaces: hydrogen bonds or pnicogen bonds? J Phys Chem A 117:183–191CrossRefGoogle Scholar
  24. 24.
    Sánchez-Sanz G, Alkorta I, Elguero J (2013) Intramolecular pnicogen interactions in PHF-(CH2)n-PHF (n = 2–6) systems. ChemPhysChem 14:1656–1665CrossRefGoogle Scholar
  25. 25.
    Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to Lewis acids. J Phys Chem A 117:3133–3141CrossRefGoogle Scholar
  26. 26.
    Grabowski SJ, Alkorta I, Elguero J (2013) Complexes between dihydrogen and amine phosphine and arsine derivatives: hydrogen bond versus pnictogen interaction. J Phys Chem A 117:3243–3325CrossRefGoogle Scholar
  27. 27.
    Politzer P, Murray J, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  28. 28.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H and BH2. J Phys Chem A 117:4981–4987CrossRefGoogle Scholar
  29. 29.
    Sánchez-Sanz G, Trujillo C, Solimannejad M, Alkorta I, Elguero J (2013) Orthogonal interactions between nitryl derivatives and electron donors: pnictogen bonds. Phys Chem Chem Phys 15:14310–14318CrossRefGoogle Scholar
  30. 30.
    Del Bene JE, Alkorta I, Elguero J (2013) Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C=PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3 and BH2. J Phys Chem A 117:6893–6903CrossRefGoogle Scholar
  31. 31.
    Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A 117:10497–10503CrossRefGoogle Scholar
  32. 32.
    Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2C=(X)P:PXH2 for X = F, Cl, OH, CN, NC, CCH, H, CH3 and BH2: P···P pnicogen bonding at σ-holes and π-holes. J Phys Chem A 117:11592–11604CrossRefGoogle Scholar
  33. 33.
    Solimannejad M, Nassirinia N, Amani SA (2013) Computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with HCN and HNC. Struct Chem 24:651–659CrossRefGoogle Scholar
  34. 34.
    Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. J Phys Chem A 116:5199–5206CrossRefGoogle Scholar
  35. 35.
    Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem Quantum Chem Symp 10:1–19CrossRefGoogle Scholar
  36. 36.
    Krishnan R, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100CrossRefGoogle Scholar
  37. 37.
    Bartlett RJ, Silver DM (1975) Many-body perturbation theory applied to electron pair correlation energies in closed-shell first-row diatomic hydrides. J Chem Phys 62:3258–3268CrossRefGoogle Scholar
  38. 38.
    Bartlett RJ, Purvis GD (1978) Many-body perturbation theory coupled-pair many-electron theory and the importance of quadruple excitations for the correlation problem. Int J Quantum Chem 14:561–581CrossRefGoogle Scholar
  39. 39.
    Del Bene JE (1993) Proton affinities of ammonia, water, and hydrogen fluoride and their anions: a quest for the basis-set limit using the Dunning augmented correlation-consistent basis sets. J Phys Chem 97:107–110CrossRefGoogle Scholar
  40. 40.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations: i. the atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  41. 41.
    Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations: v. core-valence basis sets for boron through neon. J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. Gaussian Inc: Wallingford CT 2009 Gaussian-09 Revision A01Google Scholar
  43. 43.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  44. 44.
    Bader RFW (1990) Atoms in molecules a quantum theory. Oxford University Press, Oxford, EnglandGoogle Scholar
  45. 45.
    Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, Harlow, EnglandGoogle Scholar
  46. 46.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  47. 47.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683CrossRefGoogle Scholar
  48. 48.
    AIMAll (Version 110823) Todd A, Keith TK Gristmill Software Overland Park KS USA 2011. Accessed August 1 2013
  49. 49.
    Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod Package. Universite Pierre et Marie Curie, Paris, FranceGoogle Scholar
  50. 50.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  51. 51.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 60. University of Wisconsin, Madison, WIGoogle Scholar
  52. 52.
    Perera SA, Nooijen M, Bartlett RJ (1996) Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants. J Chem Phys 104:3290–3305CrossRefGoogle Scholar
  53. 53.
    Perera SA, Sekino H, Bartlett RJ (1994) Coupled-cluster calculations of indirect nuclear coupling constants: the importance of non-fermi contact contributions. J Chem Phys 101:2186–2196CrossRefGoogle Scholar
  54. 54.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  55. 55.
    Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PS, Lauderdale WJ, Gwaltney SR, Beck S, et al. ACES II, University of Florida Gainesville, FlGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryYoungstown State UniversityYoungstownUSA
  2. 2.Instituto de Química Médica (IQM–CSIC)MadridSpain

Personalised recommendations