Simulating Cl K-edge X-ray absorption spectroscopy in MCl62− (M = U, Np, Pu) complexes and UOCl5 using time-dependent density functional theory

Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

We report simulations of the X-ray absorption near edge structure at the Cl K-edge of actinide hexahalides MCl62− (M = U, Np, Pu) and the UOCl5 complex using linear response time-dependent density functional theory extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62− and PuCl62−. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

Keywords

Actinides Plutonium Uranium Neptunium K-edge Chlorine X-ray absorption Spectroscopy XAS XANES 

References

  1. 1.
    Stöhr J (2003) NEXAFS spectroscopy. Springer, New York, pp 8–47Google Scholar
  2. 2.
    de Groot F, Kotani, A (2008) Core Level Spectroscopy of Solids. CRC Press, Boca Raton, FL:1–37, 457–462Google Scholar
  3. 3.
    Penfold T, Milne C, Chergui M (2013) Adv Chem Phys 153:1–41Google Scholar
  4. 4.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654CrossRefGoogle Scholar
  5. 5.
    Rehr JJ, Ankudinov A (2005) Coord Chem Rev 249:131–140CrossRefGoogle Scholar
  6. 6.
    Pham V, Tavernelli I, Milne C, van der Veen R, D’Angelo P, Bressler C, Chergui M (2010) Chem Phys 371:24–29CrossRefGoogle Scholar
  7. 7.
    Atta-Fynn R, Johnson D, Bylaska E, Ilton E, Schenter G, de Jong WA (2012) Inorg Chem 51:3016–3024CrossRefGoogle Scholar
  8. 8.
    Ågren H, Carravetta V, Vahtras O, Pettersson L (1994) Chem Phys Lett 222:75–81CrossRefGoogle Scholar
  9. 9.
    Villaume S, Ekstrom U, Ottosson H, Norman P (2010) Phys Chem Chem Phys 12:5596–5604CrossRefGoogle Scholar
  10. 10.
    Triguero L, Pettersson L, Ågren H (1998) Phys Rev B 58:8097–8110CrossRefGoogle Scholar
  11. 11.
    Cavalleri M, Ogasawara H, Pettersson L, Nilsson A (2002) Chem Phys Lett 364:363–370CrossRefGoogle Scholar
  12. 12.
    Iannuzzi M, Hutter J (2007) Phys Chem Chem Phys 9:1599–1610CrossRefGoogle Scholar
  13. 13.
    Prendergast D, Galli G (2006) Phys Rev Lett 96:215502CrossRefGoogle Scholar
  14. 14.
    Ray K (2007) DeBeer George S, Solomon E, Wieghardt K, Neese F. Chem Eur J 13:2783–2797CrossRefGoogle Scholar
  15. 15.
    Stener M, Fronzoni G, de Simone M (2003) Chem Phys Lett 373:115–123CrossRefGoogle Scholar
  16. 16.
    Besley N, Asmuruf F (2010) Phys Chem Chem Phys 12:12024–12039CrossRefGoogle Scholar
  17. 17.
    Liang W, Fischer SA, Frisch MJ, Li X (2011) J Chem Theory Comput 7:3540–3547CrossRefGoogle Scholar
  18. 18.
    Lopata K, Van Kuiken BE, Khalil M, Govind N (2012) J Chem Theory Comput 8:3284CrossRefGoogle Scholar
  19. 19.
    Van Kuiken BE, Valiev M, Daifuku SL, Bannan C, Strader ML, Cho H, Huse N, Schoenlein RW, Govind N, Khalil M (2013) J Phys Chem A 117:4444–4454CrossRefGoogle Scholar
  20. 20.
    Lopata K, Govind N (2011) J Chem Theory Comput 7:1344–1355CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Biggs JD, Healion D, Govind N, Mukamel S (2012) J Chem Phys 137:194306CrossRefGoogle Scholar
  22. 22.
    Healion D, Zhang Y, Biggs JD, Govind N, Mukamel S (2012) J Phys Chem Lett 3:2326–2331CrossRefGoogle Scholar
  23. 23.
    Ikeno H, de Groot FMF, Stavitski E, Tanaka I (2009) J Phys: Condens Matter 21:104208Google Scholar
  24. 24.
    Roemelt M, Maganas D, DeBeer S, Neese F (2013) J Chem Phys 138:204101CrossRefGoogle Scholar
  25. 25.
    Minasian SG, Keith JH, Batista ER, Boland KS, Clark DL, Conradson SD, Kozimor SA, Martin RL, Schwarz DE, Shuh DK, Wagner GL, Wilkerson MP, Wolfsberg LE, Yang P (2012) J Am Chem Soc 134:5586–5597CrossRefGoogle Scholar
  26. 26.
    Spencer LP, Yang P, Minasian SG, Jilek RE, Batista ER, Boland KS, Boncella JM, Conradson SD, Clark DL, Hayton TW, Kozimor SA, Martin RL, MacInnes MM, Olson AC, Scott BL, Shuh DK, Wilkerson MP (2012) J Am Chem Soc 135:2279–2290CrossRefGoogle Scholar
  27. 27.
    Neidig ML, Clark DL, Martin RL (2013) Coord Chem Rev 257:394–406CrossRefGoogle Scholar
  28. 28.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comp Phys Comm 181:1477–1489CrossRefGoogle Scholar
  29. 29.
    NWChem 6.3. http://www.nwchem-sw.org. Accessed 1 June 2013
  30. 30.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 302:375–382CrossRefGoogle Scholar
  31. 31.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291–299CrossRefGoogle Scholar
  32. 32.
    Bauernschmitt R, Haser M, Treutler O, Ahlrichs R (1997) Chem Phys Lett 264:573–578CrossRefGoogle Scholar
  33. 33.
    Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  34. 34.
    Stratmann R, Scuseria G, Frisch MJ (1998) Chem Phys 109:8218–8224CrossRefGoogle Scholar
  35. 35.
    Tretiak S, Isborn C, Niklasson A, Challacombe MJ (2009) J Chem Phys 130:054111CrossRefGoogle Scholar
  36. 36.
    Casida ME (1995) In: Chong PD (ed) Recent Advances in Density Functional Methods. World Scientific Publishing, River Edge, NJ, Vol. 1, Chap 5:155–192Google Scholar
  37. 37.
    Marques MA, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EK (eds) (2006) Time-dependent density functional theory (Lecture Notes in Physics), 1st edn. Springer, New YorkGoogle Scholar
  38. 38.
    Marques MA, Maitra NT, Nogueira FM, Gross EK, Rubio A (2012) Fundamentals of time-dependent density functional theory. Springer, BerlinCrossRefGoogle Scholar
  39. 39.
    Cao X, Dolg M, Stoll H (2003) J Chem Phys 118:487–496CrossRefGoogle Scholar
  40. 40.
    Cao X, Dolg M (2004) J Molec Struct (Theochem) 673:203–209CrossRefGoogle Scholar
  41. 41.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  42. 42.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  44. 44.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  45. 45.
    Vosko SW, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  46. 46.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  48. 48.
    Wagner W, Edelstein N, Whittaker B (1977) Inorg Chem 16:1021–1026CrossRefGoogle Scholar
  49. 49.
    Menzel ER, Gruber JB (1971) J Chem Phys 54:3857–3864CrossRefGoogle Scholar
  50. 50.
    Krause MO, Oliver JH (1979) J Phys Chem Ref Data 8:329–338CrossRefGoogle Scholar
  51. 51.
    Moore KT, van der Laan G (2009) Rev Mod Phys 81:235–298CrossRefGoogle Scholar
  52. 52.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  54. 54.
    Troullier N, Martins JL (1990) Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  55. 55.
    Hamann DR (1989) Phys Rev B 40:2980–2987CrossRefGoogle Scholar
  56. 56.
    Minasian SG, Boland KS, Feller RK, Gaunt AJ, Kozimor SA, May I, Reilly SD, Scott BL, Shuh DK (2012) Inorg Chem 51:5728–5736CrossRefGoogle Scholar
  57. 57.
    Frenkel D, Smit B (2001) Understanding molecular simulation, 2nd edn: from algorithms to applications. Academic Press, San DiegoGoogle Scholar
  58. 58.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  2. 2.Scientific Computing GroupLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations