Molecular orbital interpretation of the metal–metal multiple bonding in coaxial dibenzene dimetal compounds of iron, manganese, and chromium

  • Hui Wang
  • Dong Die
  • Hongyan Wang
  • Yaoming Xie
  • R. Bruce King
  • Henry F. SchaeferIII
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection


Both coaxial and perpendicular singlet spin state structures are found for the dibenzene dimetal complexes (C6H6)2M2 (M = Fe, Mn, and Cr) using density functional theory. For (C6H6)2M2 (M = Fe, Mn), the coaxial structure is the lower energy structure, whereas for (C6H6)2Cr2 the perpendicular structure is the lower energy structure. These coaxial structures are predicted to have very short M–M distances of ~1.98 Å for (C6H6)2Fe2, ~1.75 Å for (C6H6)2Mn2, and ~1.68 Å for (C6H6)2Cr2. Investigation into the frontier molecular orbitals suggests a formal 2π Fe=Fe double bond in (C6H6)2Fe2, a σ + 2π Mn≡Mn triple bond in (C6H6)2Mn2, and a σ + 2π + δ quadruple bond in (C6H6)2Cr2. This gives each metal atom in these coaxial (C6H6)2M2 (M = Fe, Mn, Cr) derivatives a 16-electron configuration suggesting an 8-orbital d 5 p 3 metal valence orbital manifold without the involvement of the s orbital. The coaxial (C6H6)2M2 (M = Fe, Mn) derivatives have ideal sixfold D 6h symmetry. However, distortion of coaxial (C6H6)2Cr2 from D 6h symmetry to D 2h symmetry is observed because of involvement of only one orbital from the {d(xy), d(x 2 − y 2)} set of δ symmetry of each chromium atom in the Open image in new window formal quadruple bond.


Dibenzene dimetal compounds Metal–metal multiple bonding Molecular orbitals Density functional theory 



We are grateful for financial support from the China Scholarship Council, and hospitality of Center for Computational Quantum Chemistry of the University of Georgia, USA. We also acknowledge financial support from the Fundamental Research Funds for the Central Universities (Grant SWJTU12CX084), the China National Science Foundation (Grant 11174237), the Sichuan Province, Applied Science and Technology Project (Grant 2013JY0035), the open research fund of the Key Laboratory of Advanced Scientific Computation, Xihua University (Grant: szjj2012-035), and the U.S. National Science Foundation (Grants CHE-1057466 and CHE-1054286).

Supplementary material

214_2014_1459_MOESM1_ESM.pdf (178 kb)
Supplementary material 1 (PDF 177 kb)


  1. 1.
    Cotton FA, Walton RA (1993) Multiple bonds between metal atoms, 1–27, 2nd edn. Clarendon, OxfordGoogle Scholar
  2. 2.
    Radius U, Breher F (2006) Angew Chem Int Ed 45:3006CrossRefGoogle Scholar
  3. 3.
    Cotton FA, Harris CB (1965) Inorg Chem 4:330CrossRefGoogle Scholar
  4. 4.
    Cotton FA (1965) Inorg Chem 4:334CrossRefGoogle Scholar
  5. 5.
    Langmuir I (1921) Science 54:59CrossRefGoogle Scholar
  6. 6.
    Bose DM (1926) Z Phys 219Google Scholar
  7. 7.
    Reiff F (1931) Z Anorg Allg Chem 202:375CrossRefGoogle Scholar
  8. 8.
    Sidgwick NV, Bailey RW (1934) Proc Roy Soc London A144:521CrossRefGoogle Scholar
  9. 9.
    Pyykkö P (2006) J Organomet Chem 691:4336CrossRefGoogle Scholar
  10. 10.
    King RB, Bisnette MB (1967) J Organomet Chem 8:287CrossRefGoogle Scholar
  11. 11.
    Huang JS, Dahl LF (1983) J Organomet Chem 243:57CrossRefGoogle Scholar
  12. 12.
    Curtis MD, Butler WM (1978) J Organomet Chem 155:131CrossRefGoogle Scholar
  13. 13.
    King RB, Efraty A, Douglas WM (1973) J Organomet Chem 60:125CrossRefGoogle Scholar
  14. 14.
    Potenza J, Giordano P, Mastropaolo D, Efraty A (1974) Inorg Chem 13:2540CrossRefGoogle Scholar
  15. 15.
    Cotton FA, Kruczynski L, Frenz BA (1978) J Organomet Chem 160:93CrossRefGoogle Scholar
  16. 16.
    Huffman JC, Lewis LN, Caulton KG (1980) Inorg Chem 19:2755CrossRefGoogle Scholar
  17. 17.
    Herrmann WA, Serrano R, Weichmann J (1983) J Organomet Chem 246:C57CrossRefGoogle Scholar
  18. 18.
    Hoyano JK, Graham WAG (1982) Chem Comm 27Google Scholar
  19. 19.
    Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Science 310:844CrossRefGoogle Scholar
  20. 20.
    Frenking G (2005) Science 310:796CrossRefGoogle Scholar
  21. 21.
    Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804CrossRefGoogle Scholar
  22. 22.
    Roos BO, Borin AC, Gagliardi L (2007) Angew Chem Int Ed 46:1469CrossRefGoogle Scholar
  23. 23.
    Merino G, Donald KJ, D’Acchioli JS, Hoffmann R (2007) J Am Chem Soc 129:15295CrossRefGoogle Scholar
  24. 24.
    Brynda M, Gagliardi L, Roos BO (2009) Chem Phys Lett 471:1CrossRefGoogle Scholar
  25. 25.
    Wagner FR, Noor A, Kempe R (2009) Nat Chem 1:529CrossRefGoogle Scholar
  26. 26.
    La Macchia G, Gagliardi L, Power PP, Brynda M (2008) J Am Chem Soc 130:5104CrossRefGoogle Scholar
  27. 27.
    Wolf R, Ni C, Nguyen T, Brynda M, Long GJ, Sutton AD, Fischer RC, Fettinger JC, Hellman M, Pu L, Power PP (2007) Inorg Chem 46:11277CrossRefGoogle Scholar
  28. 28.
    Tsai YC, Hsu CW, Yu JSK, Lee GH, Wang Y, Kuo TS (2008) Angew Chem Int Ed 47:7250CrossRefGoogle Scholar
  29. 29.
    Hsu CW, Yu JSK, Yen CH, Lee GH, Wang Y, Tsai YC (2008) Angew Chem Int Ed 47:9933CrossRefGoogle Scholar
  30. 30.
    Noor A, Wagner FR, Kempe R (2008) Angew Chem Int Ed 47:7246CrossRefGoogle Scholar
  31. 31.
    Kreisel KA, Yap GPA, Dmitrenko O, Landis CR, Theopold KH (2007) J Am Chem Soc 129:14162CrossRefGoogle Scholar
  32. 32.
    Cotton FA, Murillo CA, Walton RA (eds) (2005) Multiple bonds between metal atoms, 35–68. Springer, New YorkGoogle Scholar
  33. 33.
    Tang L, Luo Q, Li QS, Xie Y, King RB, Schaefer HF (2012) J Chem Theory Comput 8:862CrossRefGoogle Scholar
  34. 34.
    Wang H, Wang HY, Sun ZH, King RB (2013) Chem Phys 421:49CrossRefGoogle Scholar
  35. 35.
    Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136CrossRefGoogle Scholar
  36. 36.
    Xu B, Li QS, Xie Y, King RB, Schaefer HF (2010) J Chem Theory Comput 6:735CrossRefGoogle Scholar
  37. 37.
    Allegra A, Tettamanti Casagrande G, Immirzi A, Porri L, Vitulli G (1970) J Am Chem Soc 92:289CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  40. 40.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  41. 41.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  42. 42.
    Dunning TH (1970) J Chem Phys 53:2823CrossRefGoogle Scholar
  43. 43.
    Huzinaga S (1965) J Chem Phys 42:1293CrossRefGoogle Scholar
  44. 44.
    Hood DM, Pitzer RM, Schaefer HF (1979) J Chem Phys 71:705CrossRefGoogle Scholar
  45. 45.
    Frisch MJ et al (2009) Gaussian 09. Gaussian Inc., Wallingford, CTGoogle Scholar
  46. 46.
    Xie Y, Schaefer HF, King RB (2000) J Am Chem Soc 122:8746CrossRefGoogle Scholar
  47. 47.
    Clouston LJ, Siedschlag RB, Rudd PA, Planas N, Hu S, Miller AD, Gagliardi L, Lu CC (2013) J Am Chem Soc 135:13142CrossRefGoogle Scholar
  48. 48.
    Bondybey VE, English JH (1983) Chem Phys Lett 94:443CrossRefGoogle Scholar
  49. 49.
    Sun Z, Schaefer HF, Xie Y, Liu Y, Zhong R (2013) Mol Phys 111:2523CrossRefGoogle Scholar
  50. 50.
    Keith TA (2013) AIMAII (Version 13.11.04) TK Gristmill Software, Overland Park, KS, USA ( Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Research Center for Advanced Computation, School of Physics and ChemistryXihua UniversityChengduChina
  3. 3.Department of Chemistry and the Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations