A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment

  • Alejandro J. Garza
  • Osman Ibrahim Osman
  • Nuha Ahmed Wazzan
  • Sher Bahadar Khan
  • Abdullah Mohamed Asiri
  • Gustavo E. Scuseria
Regular Article

Abstract

The nonlinear optical (NLO) properties of N-ethyl dicyanocarbazole (1), N-ethyl cyanoethylacetatecarbazole (2), and N-ethyl dimethylacetatecarbazole (3) are studied with traditional hybrid and long-range corrected (LC) density functional theory (DFT) methods. The carbazoles are predicted to have planar structures with a high degree of π-conjugation and charge transfer, resulting in measurable NLO responses. The DFT data here calculated allow us to refine and correct previously reported experimental hyperpolarizabilities for these compounds. Experimental UV–vis absorption bands (related to hyperpolarizabilities estimated via solvatochromism) are also accurately reproduced by LC-DFT when using gap fitting schemes. The effects of different functionals on the HOMO–LUMO energy gaps and eventually on the total hyperpolarizabilities are discussed.

Keywords

Hyperpolarizabilities Organic materials DFT Range separated hybrids Solvatochromic method 

References

  1. 1.
    Weinberger P (2008) Philos Mag Lett 88:897CrossRefGoogle Scholar
  2. 2.
    Hirshberg Y (1956) J Am Chem Soc 78:2304CrossRefGoogle Scholar
  3. 3.
    Maiman TH (1960) Nature 187:439CrossRefGoogle Scholar
  4. 4.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118CrossRefGoogle Scholar
  5. 5.
    Marder SR, Sohn JE, Stucky GD (1991) Materials for non-linear optics: chemical perspectives, ACS symposium series 45, Washington, DCGoogle Scholar
  6. 6.
    Boyd RW (1992) Nonlinear optics. Academic Press, New YorkGoogle Scholar
  7. 7.
    Marder SR (2006) Chem Commun 2:131CrossRefGoogle Scholar
  8. 8.
    Irie M (2000) Chem Rev 100:1685CrossRefGoogle Scholar
  9. 9.
    Kawata S, Kawata Y (2000) Chem Rev 100:1777CrossRefGoogle Scholar
  10. 10.
    Tian H, Yang S (2004) Chem Soc Rev 33:85CrossRefGoogle Scholar
  11. 11.
    Dvornikov AS, Walker EP, Rentzepis PM (2009) J Phys Chem A 113:13633CrossRefGoogle Scholar
  12. 12.
    Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022CrossRefGoogle Scholar
  13. 13.
    Norman P, Ruud K (2006) Microscopic theory of nonlinear optics. In: Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) Nonlinear optical properties of matter: from molecules to condensed phases. Springer, The NetherlandsGoogle Scholar
  14. 14.
    Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, EnglandGoogle Scholar
  15. 15.
    Bishop DM, Kirtman B (1991) J Chem Phys 95:2646CrossRefGoogle Scholar
  16. 16.
    Brédas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243CrossRefGoogle Scholar
  17. 17.
    Savin A, Flad H (1995) Int J Quantum Chem 56:327CrossRefGoogle Scholar
  18. 18.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  19. 19.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51CrossRefGoogle Scholar
  20. 20.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106CrossRefGoogle Scholar
  21. 21.
    Vydrov OA, Scuseria GE (2006) J Chem Phys. 125:234109CrossRefGoogle Scholar
  22. 22.
    Jacquemin D, Perpète EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102CrossRefGoogle Scholar
  23. 23.
    Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489CrossRefGoogle Scholar
  24. 24.
    Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Chem Phys 104:4755CrossRefGoogle Scholar
  25. 25.
    Loboda O, Zaleśny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG (2009) J Phys Chem A 113:1159CrossRefGoogle Scholar
  26. 26.
    van Faassen M, de van BoeijR. Leeuwen PL, Berger JA, Snijders JG (2003) J. Chem. Phys. 118:1044CrossRefGoogle Scholar
  27. 27.
    Kirtman B, Lacivita V, Dovesi R, Reis H (2011) J Chem Phys 135:154101CrossRefGoogle Scholar
  28. 28.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425CrossRefGoogle Scholar
  29. 29.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111CrossRefGoogle Scholar
  30. 30.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123CrossRefGoogle Scholar
  31. 31.
    Perpète EA, Jacquemin D, Adamo C, Scuseria GE (2008) Chem Phys Lett 456:101CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226CrossRefGoogle Scholar
  33. 33.
    Song J, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117CrossRefGoogle Scholar
  34. 34.
    Zaleśny R, Bulik IW, Bartkowiak W, Luis JM, Avramopoulos A, Papadopoulos MG, Krawczyk P (2010) J Chem Phys 133:244308CrossRefGoogle Scholar
  35. 35.
    de Wergifosse M, Champagne B (2011) J Chem Phys 134:074113CrossRefGoogle Scholar
  36. 36.
    Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:191108CrossRefGoogle Scholar
  37. 37.
    Nguyen KA, Rogers JE, Slagle JE, Day PN, Kannan R, Tan L, Fleitz PA, Pachter R (2006) J Phys Chem A 110:13172CrossRefGoogle Scholar
  38. 38.
    Garza AJ, Scuseria GE, Khan SB, Asiri AM (2013) Chem Phys Lett 575:122CrossRefGoogle Scholar
  39. 39.
    Oudar JL, Chemla DS (1977) J Chem Phys 66:2664CrossRefGoogle Scholar
  40. 40.
    Hurst M, Munn RW (1989) Theory of molecular opto-electronics. VI. Comparison between nitroanilines. In: Hann RA, Bloor D (eds) Organic materials for nonlinear optics. The Royal Society of Chemistry, LondonGoogle Scholar
  41. 41.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195CrossRefGoogle Scholar
  42. 42.
    Ramakrishna G, Goodson T III (2007) J Phys Chem A 111:993CrossRefGoogle Scholar
  43. 43.
    Chakrabarti S, Ruud K (2009) Phys Chem Chem Phys 11:2592CrossRefGoogle Scholar
  44. 44.
    Asiri AM, Khan SA, Al-Amoudi MS, Alamry KA (2012) Bull Korean Chem Soc 33(6):1900CrossRefGoogle Scholar
  45. 45.
    Paley MS, Harris JM (1989) J Org Chem 54:3774CrossRefGoogle Scholar
  46. 46.
    Deguan L, Ratner MA (1988) J Am Chem Soc 110:1707CrossRefGoogle Scholar
  47. 47.
    Song H, Chem Y, Zheng X, Ying B (2001) Spectrochim Acta Part A 57:1717CrossRefGoogle Scholar
  48. 48.
    Reis H (2006) J Chem Phys 125:014506CrossRefGoogle Scholar
  49. 49.
    Willets A, Rice JE, Burland DM, Shelton D (1992) J Chem Phys 97:7590CrossRefGoogle Scholar
  50. 50.
    Stäehlin M, Moylan CR, Burland DM, Willets A, Rice JE, Shelton DP, Donley EA (1993) J Chem Phys 98:5595CrossRefGoogle Scholar
  51. 51.
    Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  53. 53.
    Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109CrossRefGoogle Scholar
  54. 54.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission KSGoogle Scholar
  55. 55.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999Google Scholar
  56. 56.
    Kaatz P, Donley EA, Shelton DP (1997) J Chem Phys 108:849Google Scholar
  57. 57.
    Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158CrossRefGoogle Scholar
  58. 58.
    Thanthiriwatte KS, Nalinde Silva KM (2002) Theochem 617:169CrossRefGoogle Scholar
  59. 59.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691CrossRefGoogle Scholar
  60. 60.
    Kleinman L (1997) Phys Rev B 56:12042CrossRefGoogle Scholar
  61. 61.
    Perdew JP, Levy M (1997) Phys Rev B 56:16021CrossRefGoogle Scholar
  62. 62.
    Kleinman L (1997) Phys Rev B 56:16029CrossRefGoogle Scholar
  63. 63.
    Garza AJ, Osman OI, Scuseria GE, Wazzan NA, Khan SB, Asiri AM (2013) Theor Chem Acc 132:1384CrossRefGoogle Scholar
  64. 64.
    Garza AJ, Osman OI, Scuseria GE, Wazzan NA, Khan SB, Asiri AM (2013) Comp Theor Chem 1022:82CrossRefGoogle Scholar
  65. 65.
    Terranova U, Bowler DR (2013) J Chem Theory Comput 9:3181CrossRefGoogle Scholar
  66. 66.
    Lippert E (1955) Z Naturforsch 10:541Google Scholar
  67. 67.
    Siddlingeshwar B, Hanagodimath SM (2009) Spectrochim Acta Part A Mol Biomol Spectrosc 72:490CrossRefGoogle Scholar
  68. 68.
    Bakhshiev NG (1964) Opt Spektrosk 16:821Google Scholar
  69. 69.
    Kawski A, Bilot L (1964) Acta Phys Pol 26:41Google Scholar
  70. 70.
    Kawski A (1966) Acta Phys Pol 29:507Google Scholar
  71. 71.
    Chamma A, Viallet P (1970) CR Acad Sci Paris Ser C 270:1901Google Scholar
  72. 72.
    Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Spectrochim Acta Part A Mol Biomol Spectrosc 65:673CrossRefGoogle Scholar
  73. 73.
    Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818CrossRefGoogle Scholar
  74. 74.
    Stein T, Kronik L, Baer R (2009) J Chem Phys 131:244119CrossRefGoogle Scholar
  75. 75.
    Karolewski A, Stein T, Kümmel S (2011) J Chem Phys 134:151101CrossRefGoogle Scholar
  76. 76.
    Pandey L, Doiron C, Sears JS, Brédas J (2012) Phys Chem Chem Phys 14:14243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro J. Garza
    • 1
  • Osman Ibrahim Osman
    • 2
  • Nuha Ahmed Wazzan
    • 2
  • Sher Bahadar Khan
    • 2
  • Abdullah Mohamed Asiri
    • 2
    • 3
  • Gustavo E. Scuseria
    • 1
    • 2
    • 4
  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJiddaSaudi Arabia
  3. 3.Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz UniversityJiddaSaudi Arabia
  4. 4.Department of Physics and AstronomyRice UniversityHoustonUSA

Personalised recommendations