Theoretical Chemistry Accounts

, 133:1452

Explicitly correlated coupled cluster benchmarks with realistic-sized ligands for some late-transition metal reactions: basis sets convergence and performance of more approximate methods

Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection


CCSD(T)-F12b benchmark calculations have been performed for the energetics and barrier heights of three late-transition metal systems, in increasing order of size: oxidative additions at bare Pd, a model for the Grubbs catalyst, and competitive CC/CH activation by a Rh(PCP) pincer complex. The results depend weakly on the basis set on the main-group atoms but are rather more sensitive to the basis set on the metal. An aug-cc-pwCVTZ-PP set on the metal combined with cc-pVTZ-F12 on the main-group elements yields barriers that are effectively converged in the basis set, but even the combination with aug-cc-pwCVTZ-PP on the metal and cc-pVDZ-F12 on the main group, or of def2-TZVPP on the metal and def2-TZVP on the main group, works well enough for most benchmark purposes. Inner-shell correlation cannot be neglected for even semi-accurate work. Simple nonempirical (meta-)GGAs with D3BJ dispersion work quite well for the Grubbs and pincer cases but break down for the Pd example, which requires exact exchange. Hybrids of these same functionals, such as PBE0, TPSS0, and B3PW91, are among the best performers through rung four on Perdew’s ladder. For the Grubbs case, dispersion is very important and D3BJ clearly is superior over D2. Only the DSD double hybrids consistently perform well in the absence of dispersion corrections.


Explicitly correlated methods Catalysis Late-transition metals Density functional theory CCSD(T)-F12 Basis set convergence 

Supplementary material

214_2014_1452_MOESM1_ESM.pdf (449 kb)
Supplementary material 1 (PDF 449 kb)


  1. 1.
    Garralda MA (2009) Dalton Trans 3635–3645. doi: 10.1039/B817263C
  2. 2.
    Troegel D, Stohrer J (2011) Coord Chem Rev 255:1440–1459CrossRefGoogle Scholar
  3. 3.
    Bahuleyan BK, Park D-W, Ha C-S, Kim I (2006) Catal Surv Asia 10:65–73CrossRefGoogle Scholar
  4. 4.
    Michalak A, Ziegler T (2005) Top Organomet Chem 12:145–186Google Scholar
  5. 5.
    Cabri W, Candiani I (1995) Acc Chem Res 28:2–7CrossRefGoogle Scholar
  6. 6.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009–3066CrossRefGoogle Scholar
  7. 7.
    Poverenov E, Milstein D (2013) Top Organomet Chem 40:21Google Scholar
  8. 8.
    Gelman D, Romm R (2013) Top Organomet Chem 40:289Google Scholar
  9. 9.
    Nishina N, Yamamoto Y (2013) Top Organomet Chem 43:115Google Scholar
  10. 10.
    Zhang Q, Wu C, Zhou L, Li J (2013) Organometallics 32:415–426CrossRefGoogle Scholar
  11. 11.
    Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746–1787CrossRefGoogle Scholar
  12. 12.
    Martinez H, Miró P, Charbonneau P, Hillmyer MA, Cramer CJ (2012) ACS Catal 2:2547–2556CrossRefGoogle Scholar
  13. 13.
    Minenkov Y, Occhipinti G, Jensen VR (2013) Organometallics 32:2099–2111CrossRefGoogle Scholar
  14. 14.
    Geoghegan K, Evans P, Rozas I, Alkorta I (2012) Chem Eur J 18:13379–13387CrossRefGoogle Scholar
  15. 15.
    Ray D, Nasima Y, Sajal MK, Ray P, Urinda S, Anoop A, Ray JK (2013) Synthesis 45:1261–1269CrossRefGoogle Scholar
  16. 16.
    Nicolas E, Martin-Vaca B, Mézailles N, Bourissou D, Maron L (2013) Eur J Inorg Chem 2013:4068–4076CrossRefGoogle Scholar
  17. 17.
    Chang Y-H, Nakajima Y, Tanaka H, Yoshizawa K, Ozawa F (2013) J Am Chem Soc 135:11791–11794CrossRefGoogle Scholar
  18. 18.
    Cho D, Ko KC, Lee JY (2013) Organometallics 32:4571–4576CrossRefGoogle Scholar
  19. 19.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  20. 20.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733CrossRefGoogle Scholar
  21. 21.
    Mutter ST, Platts JA (2010) Chem Eur J 16:5391–5399CrossRefGoogle Scholar
  22. 22.
    Steinmetz M, Grimme S (2013) ChemistryOpen 2:115–124CrossRefGoogle Scholar
  23. 23.
    Granatier J, Lazar P, Otyepka M, Hobza P (2011) J Chem Theory Comput 7:3743–3755CrossRefGoogle Scholar
  24. 24.
    Craciun R, Picone D, Long RT, Li S, Dixon DA, Peterson KA, Christe KO (2010) Inorg Chem 49:1056–1070CrossRefGoogle Scholar
  25. 25.
    Craciun R, Vincent AJ, Shaughnessy KH, Dixon DA (2010) Inorg Chem 49:5546–5553; erratum (2011) 50:5307Google Scholar
  26. 26.
    Craciun R, Long RT, Dixon DA, Christe KO (2010) J Phys Chem A 114:7571–7582CrossRefGoogle Scholar
  27. 27.
    Chen M, Craciun R, Hoffman N, Dixon DA (2012) Inorg Chem 51:13195–13203CrossRefGoogle Scholar
  28. 28.
    Li S, Hennigan JM, Dixon DA, Peterson KA (2009) J Phys Chem A 113:7861–7877CrossRefGoogle Scholar
  29. 29.
    Vasiliu M, Li S, Arduengo AJ, Dixon DA (2011) J Phys Chem C 115:12106–12120CrossRefGoogle Scholar
  30. 30.
    Kong L, Bischoff F, Valeev E (2012) Chem Rev 112:75–107CrossRefGoogle Scholar
  31. 31.
    Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4–74CrossRefGoogle Scholar
  32. 32.
    Kutzelnigg W, Morgan III JD (1992) J Chem Phys 96:4484–4508; erratum 97:8821Google Scholar
  33. 33.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  34. 34.
    Dunning TH, Peterson KA, Woon DE (1998) Basis sets: correlation consistent sets. In: Schleyer PVR (ed) Encyclopedia of computational chemistry, vol 5. Wiley, Chichester. doi:10.1002/0470845015.cca053 Google Scholar
  35. 35.
    Hill JG, Peterson KA, Knizia G, Werner HJ (2009) J Chem Phys 131:194105CrossRefGoogle Scholar
  36. 36.
    Peterson KA, Dixon DA, Stoll H (2012) J Phys Chem A 116:9777–9782CrossRefGoogle Scholar
  37. 37.
    Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110:709–716CrossRefGoogle Scholar
  38. 38.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252CrossRefGoogle Scholar
  39. 39.
    Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:324–333CrossRefGoogle Scholar
  41. 41.
    Sundermann A, Uzan O, Milstein D, Martin JML (2000) J Am Chem Soc 122:7095–7104CrossRefGoogle Scholar
  42. 42.
    Kesharwani MK, Efremenko I, Martin JML, to be publishedGoogle Scholar
  43. 43.
    Poverenov E, Efremenko I, Frenkel AI, Ben-David Y, Shimon LJW, Konstantinovski L, Martin JML, Milstein D (2008) Nature 455:1093–1096CrossRefGoogle Scholar
  44. 44.
    Efremenko I, Poverenov E, Martin JML, Milstein D (2010) J Am Chem Soc 132:14886–14900CrossRefGoogle Scholar
  45. 45.
    Montag M, Efremenko I, Cohen R, Shimon LJW, Leitus G, Diskin-Posner Y, Ben-David Y, Salem H, Martin JML, Milstein D (2010) Chem Eur J 16:328–353CrossRefGoogle Scholar
  46. 46.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  47. 47.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  48. 48.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  49. 49.
    Grimme S (2011) WIREs Comput Mol Sci 1:211–228CrossRefGoogle Scholar
  50. 50.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  51. 51.
    MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf AGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D1. Gaussian, Inc, Wallingford CTGoogle Scholar
  53. 53.
    Neese F (2012) WIREs Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  54. 54.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  55. 55.
    Hättig C (2005) Phys Chem Chem Phys 7:59–66CrossRefGoogle Scholar
  56. 56.
    Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117:587–597CrossRefGoogle Scholar
  57. 57.
    Weigend F (2006) Phys Chem Chem Phys 8:1057–1065CrossRefGoogle Scholar
  58. 58.
    Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102CrossRefGoogle Scholar
  59. 59.
    Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108CrossRefGoogle Scholar
  60. 60.
    Yousaf KE, Peterson KA (2009) Chem Phys Lett 476:303–307CrossRefGoogle Scholar
  61. 61.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  62. 62.
    Woon DE, Dunning TH (1994) J Chem Phys 100:2975–2988CrossRefGoogle Scholar
  63. 63.
    Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244–9253CrossRefGoogle Scholar
  64. 64.
    Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110:7667–7676CrossRefGoogle Scholar
  65. 65.
    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107CrossRefGoogle Scholar
  66. 66.
    Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101CrossRefGoogle Scholar
  67. 67.
    Cao X, Dolg M (2011) WIREs Comp Mol Sci 1:200–210CrossRefGoogle Scholar
  68. 68.
    Hill JG (2013) J Comput Chem 34:2168–2177CrossRefGoogle Scholar
  69. 69.
    Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106CrossRefGoogle Scholar
  70. 70.
    Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104CrossRefGoogle Scholar
  71. 71.
    Ten-no S (2004) Chem Phys Lett 398:56–61CrossRefGoogle Scholar
  72. 72.
    Marchetti O, Werner HJ (2008) Phys Chem Chem Phys 10:3400–3409CrossRefGoogle Scholar
  73. 73.
    Marchetti O, Werner HJ (2009) J Phys Chem A 113:11580–11585, specifically eq (8) thereGoogle Scholar
  74. 74.
    Grimme S (2003) J Chem Phys 118:9095CrossRefGoogle Scholar
  75. 75.
    Szabados A (2006) J Chem Phys 125:214105CrossRefGoogle Scholar
  76. 76.
    Grimme S, Goerigk L, Fink RF (2012) WIREs Comput Mol Sci 2:886CrossRefGoogle Scholar
  77. 77.
    Fink RF (2010) J Chem Phys 133:174113CrossRefGoogle Scholar
  78. 78.
    Takatani T, Hohenstein EG, Sherrill CD (2008) J Chem Phys 128:124111CrossRefGoogle Scholar
  79. 79.
    Pitoňák M, Rezac J, Hobza P (2010) Phys Chem Chem Phys 12:9611CrossRefGoogle Scholar
  80. 80.
    Perdew JP, Schmidt K (2001) AIP Conf Proc 577:1CrossRefGoogle Scholar
  81. 81.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  82. 82.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  83. 83.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  84. 84.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; erratum (1997) Phys Rev Lett 78:1396Google Scholar
  85. 85.
    Grimme S (2006) J Comp Chem 27:1787–1799CrossRefGoogle Scholar
  86. 86.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  87. 87.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  88. 88.
    Adamo C, Barone V (1998) J Chem Phys 108:664–675CrossRefGoogle Scholar
  89. 89.
    Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids’91. Akademie, Berlin, p 11Google Scholar
  90. 90.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687; erratum (1993) 48:4978Google Scholar
  91. 91.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815CrossRefGoogle Scholar
  92. 92.
    Ernzerhof M, Perdew JP (1998) J Chem Phys 109:3313–3320CrossRefGoogle Scholar
  93. 93.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271CrossRefGoogle Scholar
  94. 94.
    Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233–9242CrossRefGoogle Scholar
  95. 95.
    Becke AD (1996) J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  96. 96.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719CrossRefGoogle Scholar
  97. 97.
    Boese AD, Martin JML (2004) J Chem Phys 121:3405–3416CrossRefGoogle Scholar
  98. 98.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  99. 99.
    Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908CrossRefGoogle Scholar
  100. 100.
    Grimme S (2005) J Phys Chem A 109:3067CrossRefGoogle Scholar
  101. 101.
    Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43–52CrossRefGoogle Scholar
  102. 102.
    Karton A, Tarnopolsky A, Lamère JF, Schatz GC, Martin JML (2008) J Phys Chem A 112:12868CrossRefGoogle Scholar
  103. 103.
    Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104–20107CrossRefGoogle Scholar
  104. 104.
    Kozuch S, Martin JML (2013) J Comput Chem 34:2327–2344Google Scholar
  105. 105.
    Chai J-D, Head-Gordon M (2008) J Chem Phys 128:84106CrossRefGoogle Scholar
  106. 106.
    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810–2817CrossRefGoogle Scholar
  107. 107.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  108. 108.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465CrossRefGoogle Scholar
  109. 109.
    Fogueri UR, Kozuch S, Karton A, Martin JML (2013) Theor Chem Acc 132:1291CrossRefGoogle Scholar
  110. 110.
    Lee TJ, Taylor PR (1989) J Quant Chem Symp S23:199–207Google Scholar
  111. 111.
    Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108CrossRefGoogle Scholar
  112. 112.
    Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011) J Chem Theory Comput 7:3027–3034CrossRefGoogle Scholar
  113. 113.
    Rappoport D, Furche F (2010) J Chem Phys 133:134105CrossRefGoogle Scholar
  114. 114.
    Schultz N, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:4388–4403CrossRefGoogle Scholar
  115. 115.
    Schultz N, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127–11143CrossRefGoogle Scholar
  116. 116.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  117. 117.
    DeYonker NJ, Cundari TR, Wilson AK (2006) J Chem Phys 124:114104CrossRefGoogle Scholar
  118. 118.
    Mahler A, Wilson AK (2013) J Chem Theory Comput 9:1402–1407CrossRefGoogle Scholar
  119. 119.
    Allen WD, East ALL, Császár AG (1993) In: Laane J, Dakkouri M, van der Veken B, Oberhammer H (eds) Structures and conformations of non-rigid molecules. Kluwer, Dordrecht, p 343CrossRefGoogle Scholar
  120. 120.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230 and references thereinCrossRefGoogle Scholar
  121. 121.
    Rybtchinski B, Milstein D (2004) ACS Symp Ser 885:70CrossRefGoogle Scholar
  122. 122.
    Rybtchinski B, Milstein D (1999) Angew Chem Int Ed 38:870–883CrossRefGoogle Scholar
  123. 123.
    van der Boom ME, Milstein D (2003) Chem Rev 103:1759–1792CrossRefGoogle Scholar
  124. 124.
    Rybtchinski B, Oevers S, Montag M, Vigalok A, Rozenberg H, Martin JML, Milstein D (2001) J Am Chem Soc 123:9064–9077CrossRefGoogle Scholar
  125. 125.
    Sundermann A, Uzan O, Martin JML (2001) Organometallics 20:1783–1791CrossRefGoogle Scholar
  126. 126.
    Sun Y, Chen H (2013) J Chem Theor Comput 9:4735–4743CrossRefGoogle Scholar
  127. 127.
    Karton A, Martin JML (2006) Theor Chem Acc 115:330–333CrossRefGoogle Scholar
  128. 128.
    Truhlar DG (1998) Chem Phys Lett 294:45–48CrossRefGoogle Scholar
  129. 129.
    Kang RH, Lai WZ, Yao JN, Shaik S, Chen H (2012) J Chem Theory Comput 8:3119–3127CrossRefGoogle Scholar
  130. 130.
    Lai WZ, Yao JN, Shaik S, Chen H (2012) J Chem Theory Comput 8:2991–2996CrossRefGoogle Scholar
  131. 131.
    Kang RH, Yao JN, Chen H (2013) J Chem Theory Comput 9:1872–1879CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Organic ChemistryWeizmann Institute of ScienceReḥovotIsrael

Personalised recommendations