Comparative bonding analysis of N2 and P2 versus tetrahedral N4 and P4

Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

The nature of the chemical bonds in E2 and tetrahedral E4 (E = N, P) has been analysed with the help of an energy decomposition method. The π bonds in P2 are not particularly weak. On the contrary, the contribution of P–P π bonding to the chemical bond in P2 is even higher than the contribution of N–N π bonding to the chemical bond in N2. The higher stability of P4 (Td) and the much lower stability of N4 (Td) with regard to the diatomic species come from the substantially larger weakening of the N–N σ-bonds compared with the P–P σ-bonds in the tetrahedral species. The sum of the six P–P σ-bond energies in P4 is higher than the sum of two σ- and four π-bonds in two P2, but the six N–N σ-bonds in N4 are weaker than two σ- and four π-bonds in two N2. The crucial factor that leads to the weak N–N bonds in N4, is the rather long N–N bonds which are 32.8 % longer than in N2. In contrast, the P–P bonds in P4 are only 16.2 % longer than in P2. Since the equilibrium distances in E2 and E4 are determined by Pauli repulsion, it can be concluded that the origin for the different stabilities of N4 and P4 relative to the diatomic molecules is the exchange repulsion. The nitrogen atoms encounter stronger Pauli repulsion, because the 2s and 2p valence orbitals have a similar radius while the 3s and 3p radii are more different.

Keywords

Multiple bonding π-Bonding of heavy main-group atoms Energy decomposition analysis Dipnictogens Tetrapnictogens 

References

  1. 1.
    Weidenbruch M (1999) Eur J Inorg Chem 373 Google Scholar
  2. 2.
    Power PP (1998) J Chem Soc Dalton Trans 2939 Google Scholar
  3. 3.
    Grützmacher H, Fässler T (2000) Chem Eur J 6:2317CrossRefGoogle Scholar
  4. 4.
    Jacobsen H, Ziegler T (1994) J Am Chem Soc 116:3667CrossRefGoogle Scholar
  5. 5.
    Trinquier G (1991) J Am Chem Soc 113:144CrossRefGoogle Scholar
  6. 6.
    Lischka H, Köhler H (1983) J Am Chem Soc 105:6646CrossRefGoogle Scholar
  7. 7.
    Binkley JS (1984) J Am Chem Soc 106:603CrossRefGoogle Scholar
  8. 8.
    Kalcher J, Sax A, Olbrich G (1984) Int J Quantum Chem 25:543CrossRefGoogle Scholar
  9. 9.
    Köhler H-J, Lischka H (1984) Chem Phys Lett 112:33CrossRefGoogle Scholar
  10. 10.
    Clabo DA, Schaefer HF (1986) J Chem Phys 84:1664CrossRefGoogle Scholar
  11. 11.
    Thies BS, Grev RS, Schaefer HF (1987) Chem Phys Lett 140:355CrossRefGoogle Scholar
  12. 12.
    Koseki S, Gordon MS (1988) J Phys Chem 92:364CrossRefGoogle Scholar
  13. 13.
    Koseki S, Gordon MS (1989) J Phys Chem 93:118CrossRefGoogle Scholar
  14. 14.
    Colegrove BT, Schaefer HF (1990) J Phys Chem 94:5593CrossRefGoogle Scholar
  15. 15.
    Grev RS, De Leeuw BJ, Schaefer HF (1990) Chem Phys Lett 165:257CrossRefGoogle Scholar
  16. 16.
    Grev RS (1991) Adv Organomet Chem 33:125Google Scholar
  17. 17.
    Colegrove BT, Schaefer HF (1991) J Am Chem Soc 113:1557CrossRefGoogle Scholar
  18. 18.
    Grev RS, Schaefer HF (1992) J Chem Phys 97:7990CrossRefGoogle Scholar
  19. 19.
    Palagyi Z, Schaefer HF, Kapuy E (1993) J Am Chem Soc 115:6901CrossRefGoogle Scholar
  20. 20.
    Han Y-K, Bae C, Lee YS, Lee SY (1998) J Comp Chem 19:1526CrossRefGoogle Scholar
  21. 21.
    Nagase S, Kobayashi K, Takagi N (2000) J Organomet Chem 611:264CrossRefGoogle Scholar
  22. 22.
    Chen Y, Hartmann M, Diedenhofen M, Frenking G (2001) Angew Chem Int Ed 40:2052CrossRefGoogle Scholar
  23. 23.
    Li Q-S, Lü R-H, Xie Y, Schaefer HF (2002) J Comput Chem 23:1642CrossRefGoogle Scholar
  24. 24.
    Lein M, Krapp A, Frenking G (2005) J Am Chem Soc 127:6290 CrossRefGoogle Scholar
  25. 25.
    Bogey M, Bolvin H, Demuyneck C, Destombes J-L (1991) Phys Rev Lett 66:413CrossRefGoogle Scholar
  26. 26.
    Cordonnier M, Bogey M, Demuynck C, Destombes J-L (1992) J Chem Phys 97:7984CrossRefGoogle Scholar
  27. 27.
    Wang X, Andrews L, Kushto G (2002) J Phys Chem A 106:5809CrossRefGoogle Scholar
  28. 28.
    Wang X, Andrews L, Chertihin GV, Souer PF (2002) J Phys Chem A 106:6302CrossRefGoogle Scholar
  29. 29.
    Andrews L, Wang X (2002) J Phys Chem A 106:7697Google Scholar
  30. 30.
    Wang X, Andrews L (2003) J Am Chem Soc 125:6581CrossRefGoogle Scholar
  31. 31.
    Sekiguchi A, Kinjo R, Ichinohe M (2004) Science 305:1755 (E = Si)CrossRefGoogle Scholar
  32. 32.
    Stender M, Phillips AD, Wright RJ, Power PP (2002) Angew Chem Int Ed 41:1785 (E = Ge)CrossRefGoogle Scholar
  33. 33.
    Phillips AD, Wright RJ, Olmstead MM, Power PP (2002) J Am Chem Soc 124:5930 (E = Sn)CrossRefGoogle Scholar
  34. 34.
    Pu L, Twamley B, Power PP (2000) J Am Chem Soc 122:3524 (E = Pb)CrossRefGoogle Scholar
  35. 35.
    Landis CR, Weinhold F (2006) J Am Chem Soc 128:7335CrossRefGoogle Scholar
  36. 36.
    Tofan D, Cummins CC (2011) Angew Chem Int Ed 49:7516CrossRefGoogle Scholar
  37. 37.
    Cacace F, de Petris G, Troiani A (2002) Science 295:480CrossRefGoogle Scholar
  38. 38.
    Kutzelnigg W (1984) Angew Chem 96:262CrossRefGoogle Scholar
  39. 39.
    Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272CrossRefGoogle Scholar
  40. 40.
    Esterhuysen C, Frenking G (2004) Theoret Chem Acc 113:294CrossRefGoogle Scholar
  41. 41.
    Lein M, Frenking G (2004) Austr J Chem 57:1191CrossRefGoogle Scholar
  42. 42.
    Kovács A, Esterhuysen C, Frenking G (2005) Chem Eur J 11:1813CrossRefGoogle Scholar
  43. 43.
    Cappel D, Tüllmann S, Krapp A, Frenking G (2005) Angew Chem 117:3683CrossRefGoogle Scholar
  44. 44.
    Cappel D, Tüllmann S, Krapp A, Frenking G (2005) Angew Chem Int Ed Engl 44:3617CrossRefGoogle Scholar
  45. 45.
    Szabó A, Kovács A, Frenking G (2005) Z Allg Anorg Chem 631:1803CrossRefGoogle Scholar
  46. 46.
    Fernández I, Frenking G (2006) Chem Eur J 12:3617CrossRefGoogle Scholar
  47. 47.
    Erhardt S, Frenking G (2006) Chem Eur J 12:4620CrossRefGoogle Scholar
  48. 48.
    Fernández I, Frenking G (2006) Chem Commun 5030Google Scholar
  49. 49.
    Fernández I, Frenking G (2007) Faraday Discuss 135:403CrossRefGoogle Scholar
  50. 50.
    Calhorda MJ, Krapp A, Frenking G (2007) J Phys Chem A 111:2859CrossRefGoogle Scholar
  51. 51.
    Fernández I, Frenking G (2007) J Phys Chem A 111:8028CrossRefGoogle Scholar
  52. 52.
    Fernández I, Frenking G (2007) J Org Chem 72:7367CrossRefGoogle Scholar
  53. 53.
    Fernández I, Uggerud E, Frenking G (2007) Chem Eur J 13:8620CrossRefGoogle Scholar
  54. 54.
    Fernández I, Cerpa E, Merino G, Frenking G (2008) Organometallics 27:1106CrossRefGoogle Scholar
  55. 55.
    Tonner R, Frenking G (2008) Chem Eur J 14:3260CrossRefGoogle Scholar
  56. 56.
    C Elschenbroich, J Six, K Harms, G Frenking, G Heydenrych (2008) Eur J Inorg Chem 3303Google Scholar
  57. 57.
    Ducati LC, Takagi N, Frenking G (2009) J Phys Chem A 113:11693CrossRefGoogle Scholar
  58. 58.
    Fernández I, Frenking G, Uggerud E (2010) J Org Chem 75:2971CrossRefGoogle Scholar
  59. 59.
    Gonzalez-Gallardo S, Prabusankar G, Cadenbach T, Gemel C, von Hopffgarten M, Frenking G, Fischer RA (2010) Structure Bonding 136:147CrossRefGoogle Scholar
  60. 60.
    Fernández I, Duvall M, I-C Wu J, Schleyer P v R, Frenking G (2011) Chem Eur J 17:2215CrossRefGoogle Scholar
  61. 61.
    Shimizu T, Frenking G (2011) Theoret Chem Acc 130:269CrossRefGoogle Scholar
  62. 62.
    Celik MA, Sure R, Klein S, Kinjo R, Bertrand G, Frenking G (2012) Chem Eur J 18:5676CrossRefGoogle Scholar
  63. 63.
    Devarajan D, Frenking G (2012) Chem Asian J 7:1296CrossRefGoogle Scholar
  64. 64.
    Goedecke C, Sitt R, Frenking G (2012) Inorg Chem 51:11259CrossRefGoogle Scholar
  65. 65.
    Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Neudeck S, Tkach I, Wolf H, Kratzert D, Herbst-Irmer R, Niepötter B, Stalke D (2013) Angew Chem 125:1845CrossRefGoogle Scholar
  66. 66.
    Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Neudeck S, Tkach I, Wolf H, Kratzert D, Herbst-Irmer R, Niepötter B, Stalke D (2013) Angew Chem Int Ed 52:1801CrossRefGoogle Scholar
  67. 67.
    Holzmann N, Dange D, Jones C, Frenking G (2013) Angew Chem 125:3078CrossRefGoogle Scholar
  68. 68.
    Holzmann N, Dange D, Jones C, Frenking G (2013) Angew Chem Int Ed 52:3004CrossRefGoogle Scholar
  69. 69.
    Holzmann N, Stasch A, Jones C, Frenking G (2013) Chem Eur J 19:6467CrossRefGoogle Scholar
  70. 70.
    Couchman SA, Holzmann N, Frenking G, Wilson DJD, Dutton JL (2013) J Chem Soc, Dalton Trans 42:11375CrossRefGoogle Scholar
  71. 71.
    Esterhuysen C, Frenking G (2013) J Chem Soc, Dalton Trans 42:13349CrossRefGoogle Scholar
  72. 72.
    Celik MA, Frenking G, Neumüller B, Petz W (2013) ChemPlusChem 78:1024CrossRefGoogle Scholar
  73. 73.
    Diefenbach A, Bickelhaupt FM, Frenking G (2000) J Am Chem Soc 122:6449CrossRefGoogle Scholar
  74. 74.
    Frenking G, Wichmann K, Fröhlich N, Grobe J, Golla W, Le Van D, Krebs B, Läge M (2002) Organometallics 21:2921CrossRefGoogle Scholar
  75. 75.
    Cases M, Frenking G, Duran M, Solà M (2002) Organometallics 21:4182CrossRefGoogle Scholar
  76. 76.
    Frenking G, Solà M, Vyboishchikov SF (2005) J Organomet Chem 690:6178CrossRefGoogle Scholar
  77. 77.
    Uddin J, Frenking G (2001) J Am Chem Soc 123:1683CrossRefGoogle Scholar
  78. 78.
    Dörr M, Frenking G, Allg Z (2002) Anorg Chem 628:843CrossRefGoogle Scholar
  79. 79.
    Massera C, Frenking G (2003) Organometallics 22:2758CrossRefGoogle Scholar
  80. 80.
    Nechaev MS, Rayón VM, Frenking G (2004) J Phys Chem A 108:3134CrossRefGoogle Scholar
  81. 81.
    Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Chem Eur J 7:4155CrossRefGoogle Scholar
  82. 82.
    Rayón VM, Frenking G (2003) Organometallics 22:3304CrossRefGoogle Scholar
  83. 83.
    Frunzke J, Lein M, Frenking G (2002) Organometallics 21:3351CrossRefGoogle Scholar
  84. 84.
    Lein M, Frunzke J, Frenking G (2003) Inorg Chem 42:2504CrossRefGoogle Scholar
  85. 85.
    Nemcsok DS, Kovács A, Rayón VM, Frenking G (2002) Organometallics 21:5803CrossRefGoogle Scholar
  86. 86.
    Chen Y, Hartmann M, Frenking G (2001) Z Anorg Allg Chem 627:985CrossRefGoogle Scholar
  87. 87.
    Kovács A, Frenking G (2001) Organometallics 20:2510CrossRefGoogle Scholar
  88. 88.
    Pandey KK, Lein M, Frenking G (2003) J Am Chem Soc 125:1660CrossRefGoogle Scholar
  89. 89.
    Spuhler P, Lein M, Frenking G (2003) Z Allg Anorg Chem 629:803CrossRefGoogle Scholar
  90. 90.
    Esterhuysen C, Frenking G (2003) Chem Eur J 9:3518CrossRefGoogle Scholar
  91. 91.
    Dietz O, Rayón VM, Frenking G (2003) Inorg Chem 42:4977CrossRefGoogle Scholar
  92. 92.
    Loschen C, Frenking G (2004) Inorg Chem 43:778CrossRefGoogle Scholar
  93. 93.
    Nemcsok D, Wichmann K, Frenking G (2004) Organometallics 23:3640CrossRefGoogle Scholar
  94. 94.
    Pandey KK, Frenking G (2004) Eur J Inorg Chem 4388Google Scholar
  95. 95.
    Bessac F, Frenking G (2006) Inorg Chem 45:6956CrossRefGoogle Scholar
  96. 96.
    Krapp A, Pandey KK, Frenking G (2007) J Am Chem Soc 129:7596CrossRefGoogle Scholar
  97. 97.
    Caramori GF, Frenking G (2007) Organometallics 26:5815CrossRefGoogle Scholar
  98. 98.
    Caramori GF, Frenking G (2008) Theor Chem Acc 120:351CrossRefGoogle Scholar
  99. 99.
    Erhardt S, Frenking G (2009) J Organomet Chem 694:1091CrossRefGoogle Scholar
  100. 100.
    Prabusankar G, Gemel C, Parameswaran P, Flener C, Frenking G, Fischer RA (2009) Angew Chem Int Ed 48:5526CrossRefGoogle Scholar
  101. 101.
    Parameswaran P, Frenking G (2009) Chem Eur J 15:8817CrossRefGoogle Scholar
  102. 102.
    Gamez JA, Tonner R, Frenking G (2010) Organometallics 29:5676CrossRefGoogle Scholar
  103. 103.
    Parameswaran P, Frenking G (2010) J Phys Chem A 114:8529CrossRefGoogle Scholar
  104. 104.
    Krapp A, Frenking G (2010) Theor Chem Acc 127:141CrossRefGoogle Scholar
  105. 105.
    Takagi N, Krapp A, Frenking G (2010) Can J Chem 88:1079CrossRefGoogle Scholar
  106. 106.
    Stander-Grobler E, Schuster O, Heydenrych G, Cronje S, Tosh E, Albrecht M, Frenking G, Raubenheimer HG (2010) Organometallics 29:5821CrossRefGoogle Scholar
  107. 107.
    Bollermann T, Cadenbach T, Gemel C, von Hopffgarten M, Frenking G, Fischer RA (2010) Chem Eur J 16:13372CrossRefGoogle Scholar
  108. 108.
    Takagi N, Krapp A, Frenking G (2011) Inorg Chem 50:819CrossRefGoogle Scholar
  109. 109.
    Senthilnathan D, Vaideeswaran S, Venuvanalingam P, Frenking G (2011) J Mol Model 17:465CrossRefGoogle Scholar
  110. 110.
    Rasika Dias HV, Dash C, Yousufuddin M, Celik MA, Frenking G (2011) Inorg Chem 50:4253CrossRefGoogle Scholar
  111. 111.
    Petz W, Neumüller B, Klein S, Frenking G (2011) Organometallics 30:3330CrossRefGoogle Scholar
  112. 112.
    Bayat M, Hopffgarten Mv, Salehzadeh S, Frenking G (2011) J Organomet Chem 696:2976CrossRefGoogle Scholar
  113. 113.
    Esterhuysen C, Frenking G (2011) Chem Eur J 17:9944CrossRefGoogle Scholar
  114. 114.
    Bollermann T, Freitag K, Gemel C, Molon M, Seidel RW, von Hopffgarten M, Jerabek P, Frenking G, Fischer RA (2011) Inorg Chem 50:10486CrossRefGoogle Scholar
  115. 115.
    von Hopffgarten M, Frenking G (2011) J Phys Chem A 115:12758CrossRefGoogle Scholar
  116. 116.
    Bayat M, Salehzadeh S, Frenking G (2012) J Organomet Chem 697:74CrossRefGoogle Scholar
  117. 117.
    Das A, Dash C, Yousufuddin M, Celik MA, Frenking G, Rasika Dias HV (2012) Angew Chem 124:4006CrossRefGoogle Scholar
  118. 118.
    Das A, Dash C, Yousufuddin M, Celik MA, Frenking G, Rasika Dias HV (2012) Angew Chem Int Ed 51:3940CrossRefGoogle Scholar
  119. 119.
    Flener-Lovitt C, Frenking G, Girolami GS (2012) Organometallics 31:4122CrossRefGoogle Scholar
  120. 120.
    Nguyen TAN, Frenking G (2012) Chem Eur J 18:12733CrossRefGoogle Scholar
  121. 121.
    Celik MA, Dash C, Adiraju VAK, Das A, Yousufuddin M, Frenking G, Dias HVR (2013) Inorg Chem 52:729CrossRefGoogle Scholar
  122. 122.
    Mousavi M, Frenking G (2013) Organometallics 32:1743CrossRefGoogle Scholar
  123. 123.
    Das A, Dash C, Celik MA, Yousufuddin M, Frenking G, Rasika Dias HV (2013) Organometallics 32:3135CrossRefGoogle Scholar
  124. 124.
    Molon M, Gemel C, Seidel RW, Jerabek P, Frenking G, Fischer RA (2013) Inorg Chem 52:7152CrossRefGoogle Scholar
  125. 125.
    Nguyen TAN, Frenking G (2013) Mol Phys 111:2640CrossRefGoogle Scholar
  126. 126.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  127. 127.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  128. 128.
    Snijders JG, Baerends EJ, Vernooijs P (1982) At Nucl Data Tables 26:483CrossRefGoogle Scholar
  129. 129.
    Krijn J, Baerends BJ (1984) Fit functions in the HFS-method, internal report. Vrije Universiteit, Amsterdam (in Dutch)Google Scholar
  130. 130.
    ADF Version 2012.01Google Scholar
  131. 131.
    Morokuma K (1971) J Chem Phys 55:1236CrossRefGoogle Scholar
  132. 132.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1558CrossRefGoogle Scholar
  133. 133.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1755CrossRefGoogle Scholar
  134. 134.
    Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem In: Lipkowitz KB, Boyd DB (eds), vol 15. Wiley-VCH, New York, p 1Google Scholar
  135. 135.
    te Velde G, Bickelhaupt FM, Baerends EJ, van Gisbergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T (2001) J Comput Chem 22:931CrossRefGoogle Scholar
  136. 136.
    von Hopffgarten M, Frenking G (2012) WIREs Comput Mol Sci 2:43CrossRefGoogle Scholar
  137. 137.
    Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand-Reinhold, New YorkCrossRefGoogle Scholar
  138. 138.
    Brassington NJ, Edwards HGM, Long DA (1981) J Raman Spectrosc 11:346CrossRefGoogle Scholar
  139. 139.
    Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17(Suppl 1) Google Scholar
  140. 140.
    Krapp A, Bickelhaupt FM, Frenking G (2006) Chem Eur J 12:9196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Fachbereich ChemiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations