Accurate atomization energies from combining coupled-cluster computations with interference-corrected explicitly correlated second-order perturbation theory

  • Konstantinos D. Vogiatzis
  • Robin Haunschild
  • Wim KlopperEmail author
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection


Interference-corrected explicitly correlated second-order perturbation theory (INT-MP2-F12) is applied to accelerate the convergence to the complete-basis-set limit of coupled-cluster computations. Adding energy terms obtained from INT-MP2-F12 theory to the energies obtained from coupled-cluster singles-and-doubles (CCSD) computations yields a mean absolute deviation (MAD) from explicitly correlated CCSD results below 1 kJ/mol for a test set of 106 molecules. A composite scheme for the computation of atomization energies is assessed. This scheme is denoted as CCSD(T)+F12+INT and consists of the CCSD model with perturbative triples (CCSD(T)) supplemented with INT-MP2-F12 corrections, using a quadruple-zeta quality basis set (cc-pVQZ-F12). The composite scheme achieves chemical accuracy with respect to experimentally derived or computed reference values. Using Boys localized molecular orbitals, the MAD of the CCSD(T)+F12+INT/cc-pVQZ-F12 atomization energies from the reference values is below 1 kJ/mol for the G2/97 test set.


Atomization energy Performance assessment Test set Coupled-cluster theory Explicit correlation Interference effects 



This work was supported by the DFG through the Center for Functional Nanostructures (CFN, Project No. C3.3). We are also grateful to the Bundesministerium für Bildung und Forschung (BMBF) through the Helmholtz Research Programme “Science and Technology of Nanosystems” and to the State of Baden-Württemberg for providing the necessary infrastructure. R.H. thanks the Carl-Zeiss-Stiftung for financial support.


  1. 1.
    Peterson KA, Dunning TH Jr (1995) J Phys Chem 99:3898–3901CrossRefGoogle Scholar
  2. 2.
    Dunning TH Jr (2000) J Phys Chem A 104:9062–9080CrossRefGoogle Scholar
  3. 3.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1024CrossRefGoogle Scholar
  4. 4.
    Klopper W, Bachorz RA, Hättig C, Tew DP (2010) Theor Chem Acc 126:289–304CrossRefGoogle Scholar
  5. 5.
    Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4–74CrossRefGoogle Scholar
  6. 6.
    Kong L, Bischoff FA, Valeev EF (2012) Chem Rev 112:75–107CrossRefGoogle Scholar
  7. 7.
    Ten-no S (2012) Theor Chem Acc 131:1070CrossRefGoogle Scholar
  8. 8.
    Ten-no S, Noga J (2012) WIREs Comput Mol Sci 2:114–125CrossRefGoogle Scholar
  9. 9.
    Feller D, Peterson KA (2013) J Chem Phys 139:084110CrossRefGoogle Scholar
  10. 10.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  11. 11.
    Helgaker T, Klopper W, Tew DP (2008) Mol Phys 106:2107–2143CrossRefGoogle Scholar
  12. 12.
    Papajak E, Truhlar DG (2012) J Chem Phys 137:064110CrossRefGoogle Scholar
  13. 13.
    Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) J Chem Phys 93:2537–2545CrossRefGoogle Scholar
  14. 14.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230CrossRefGoogle Scholar
  15. 15.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776CrossRefGoogle Scholar
  16. 16.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108CrossRefGoogle Scholar
  17. 17.
    DeYonker NJ, Cundari TR, Wilson AK (2006) J Chem Phys 124:114104CrossRefGoogle Scholar
  18. 18.
    DeYonker NJ, Wilson BR, Pierpont AW, Cundari TR, Wilson AK (2009) Mol Phys 107:1107–1121CrossRefGoogle Scholar
  19. 19.
    Mahler A, Wilson AK (2013) J Chem Theory Comp 9:1402–1407CrossRefGoogle Scholar
  20. 20.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193–2218CrossRefGoogle Scholar
  21. 21.
    Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081–6090CrossRefGoogle Scholar
  22. 22.
    Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) J Chem Phys 94:6091–6101CrossRefGoogle Scholar
  23. 23.
    Montgomery JA Jr, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900–5909CrossRefGoogle Scholar
  24. 24.
    Petersson GA, Malick DK, Wilson WG, Ochterski JW, Montgomery JA Jr, Frisch MJ (1998) J Chem Phys 109:10570–10579CrossRefGoogle Scholar
  25. 25.
    Petersson GA, Frisch MJ (2000) J Phys Chem A 104:2183–2190CrossRefGoogle Scholar
  26. 26.
    Wood GPF, Radom L, Petersson GA, Barnes EC, Frisch MJ, Montgomery JA Jr (2006) J Chem Phys 125:94106–94121CrossRefGoogle Scholar
  27. 27.
    East ALL, Allen WD (1993) J Chem Phys 99:4638–4650CrossRefGoogle Scholar
  28. 28.
    Császár AG, Allen WD, Schaefer HF III (1998) J Chem Phys 108:9751–9764CrossRefGoogle Scholar
  29. 29.
    Fast PL, Sánchez ML, Truhlar DG (1999) Chem Phys Lett 306:407–410CrossRefGoogle Scholar
  30. 30.
    Fast PL, Corchado JC, Sánchez ML, Truhlar DG (1999) J Phys Chem A 103:3139–3143CrossRefGoogle Scholar
  31. 31.
    Fast PL, Corchado JC, Sánchez ML, Truhlar DG (1999) J Phys Chem A 103:5129–5136CrossRefGoogle Scholar
  32. 32.
    Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J, Valeev EF, Flowers BA, Vázquez J, Stanton JF (2004) J Chem Phys 121:11599–11613CrossRefGoogle Scholar
  33. 33.
    Harding ME, Vázquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2008) J Chem Phys 128:114111CrossRefGoogle Scholar
  34. 34.
    Boese AD, Oren M, Atasoylu O, Martin JML, Kállay M, Gauss J (2004) J Chem Phys 120:4129–4141CrossRefGoogle Scholar
  35. 35.
    Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108CrossRefGoogle Scholar
  36. 36.
    Karton A, Martin JML (2012) J Chem Phys 136:124114CrossRefGoogle Scholar
  37. 37.
    Dunning TH Jr, Peterson KA (2000) J Chem Phys 113:7799–7808CrossRefGoogle Scholar
  38. 38.
    Klopper W, Ruscic B, Tew DP, Bischoff FA, Wolfsegger S (2009) Chem Phys 356:14–24CrossRefGoogle Scholar
  39. 39.
    Ruscic B, Pinzon RE, Morton ML, von Laszevski G, Bittner SJ, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979–9997CrossRefGoogle Scholar
  40. 40.
    Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su MC, Sutherland JW, Michael JV (2006) J Phys Chem A 110:6592–6601CrossRefGoogle Scholar
  41. 41.
    Nyden MR, Petersson GA (1981) J Chem Phys 75:1843–1862CrossRefGoogle Scholar
  42. 42.
    Petersson GA, Nyden MR (1981) J Chem Phys 75:3423–3425CrossRefGoogle Scholar
  43. 43.
    Vogiatzis KD, Barnes EC, Klopper W (2011) Chem Phys Lett 503:157–161CrossRefGoogle Scholar
  44. 44.
    Ranasinghe DS, Petersson GA (2013) J Chem Phys 138:144104CrossRefGoogle Scholar
  45. 45.
    Bachorz RA, Bischoff FA, Glöß A, Hättig C, Höfener S, Klopper W, Tew DP (2011) J Comput Chem 32:2492–2513CrossRefGoogle Scholar
  46. 46.
    Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:84102–84114CrossRefGoogle Scholar
  47. 47.
    Vogiatzis KD, Klopper W (2013) Mol Phys 111:2299–2305CrossRefGoogle Scholar
  48. 48.
    Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  49. 49.
    Marshall MS, Burns LA, Sherrill CD (2011) J Chem Phys 135:194102CrossRefGoogle Scholar
  50. 50.
    Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, ChichesterCrossRefGoogle Scholar
  51. 51.
    Bakowies D (2007) J Chem Phys 127:84105–84128CrossRefGoogle Scholar
  52. 52.
    Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:8996–8999CrossRefGoogle Scholar
  53. 53.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079CrossRefGoogle Scholar
  54. 54.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1998) J Chem Phys 109:42–54CrossRefGoogle Scholar
  55. 55.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4586CrossRefGoogle Scholar
  56. 56.
    Lynch BJ, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:1643–1649CrossRefGoogle Scholar
  57. 57.
    Haunschild R, Janesko BG, Scuseria GE (2009) J Chem Phys 131:154112CrossRefGoogle Scholar
  58. 58.
    Köhn A, Tew DP (2010) J Chem Phys 132:024101CrossRefGoogle Scholar
  59. 59.
    Turbomole V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
  60. 60.
    Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F (2013) WIREs Comput Mol Sci doi: 10.1002/wcms.1162
  61. 61.
    Hill JG, Mazumder S, Peterson KA (2010) J Chem Phys 132:054108CrossRefGoogle Scholar
  62. 62.
    Hill JG, Peterson KA (2010) Phys Chem Chem Phys 12:10460–10468CrossRefGoogle Scholar
  63. 63.
    Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108–184115CrossRefGoogle Scholar
  64. 64.
    Hättig C (2005) Phys Chem Chem Phys 7:59–66CrossRefGoogle Scholar
  65. 65.
    Weigend F (2008) J Comput Chem 29:167–175CrossRefGoogle Scholar
  66. 66.
    Ten-no S (2004) J Chem Phys 121:117–129CrossRefGoogle Scholar
  67. 67.
    Bokhan D, Ten-no S, Noga J (2008) Phys Chem Chem Phys 10:3320–3326CrossRefGoogle Scholar
  68. 68.
    Tew DP, Klopper W (108) Mol Phys 108:315–325Google Scholar
  69. 69.
    Janssen CL, Nielsen IM (1998) Chem Phys Lett 290:423–430CrossRefGoogle Scholar
  70. 70.
    Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:3898–3906CrossRefGoogle Scholar
  71. 71.
    Haunschild R, Klopper W (2012) Theor Chem Acc 131:1112CrossRefGoogle Scholar
  72. 72.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383CrossRefGoogle Scholar
  73. 73.
    Haunschild R, Klopper W (2012) J Chem Phys 136:164102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Konstantinos D. Vogiatzis
    • 1
    • 2
  • Robin Haunschild
    • 2
  • Wim Klopper
    • 1
    • 2
    Email author
  1. 1.Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations