The V state of ethylene: valence bond theory takes up the challenge

  • Wei WuEmail author
  • Huaiyu Zhang
  • Benoît BraïdaEmail author
  • Sason ShaikEmail author
  • Philippe C. HibertyEmail author
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection


The ground state and first singlet excited state of ethylene, so-called N and V states, respectively, are studied by means of modern valence bond methods. It is found that extremely compact wave functions, made of three VB structures for the N state and four structures for the V state, provide an N → V transition energy of 8.01 eV, in good agreement with experiment (7.88 eV for the N → V transition energy estimated from experiments). Further improvement to 7.96/7.93 eV is achieved at the variational and diffusion Monte Carlo (MC) levels, respectively, VMC/DMC, using a Jastrow factor coupled with the same compact VB wave function. Furthermore, the measure of the spatial extension of the V state wave function, 19.14 a 0 2 , is in the range of accepted values obtained by large-scale state-of-the-art molecular orbital-based methods. The σ response to the fluctuations of the π electrons in the V state, known to be a crucial feature of the V state, is taken into account using the breathing orbital valence bond method, which allows the VB structures to have different sets of orbitals. Further valence bond calculations in a larger space of configurations, involving explicit participation of the σ response, with 9 VB structures for the N state and 14 for the V state, confirm the results of the minimal structure set, yielding an N → V transition energy of 7.97 eV and a spatial extension of 19.16 a 0 2 for the V state. Both types of valence bond calculations show that the V state of ethylene is not fully ionic as usually assumed, but involving also a symmetry-adapted combination of VB structures each with asymmetric covalent π bonds. The latter VB structures have cumulated weights of 18–26 % and stabilize the V state by about 0.9 eV. It is further shown that these latter VB structures, rather than the commonly considered zwitterionic ones, are the ones responsible for the spatial extension of the V state, known to be ca. 50 % larger than the V state.


Valence bond Quantum Monte Carlo V state of ethylene Breathing orbitals 



W. W. is supported by the Natural Science Foundation of China (Nos. 21120102035, 21273176, 21290193). SS thanks the Israel Science Foundation (ISF grant 1183/13). B. B. thanks the IDRIS computational center for an allocation of computer time.


  1. 1.
    Cooper DL, Gerratt J, Raimondi M (1991) Chem Rev 91:929CrossRefGoogle Scholar
  2. 2.
    Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1998) Spin-coupled theory. Wiley, New YorkGoogle Scholar
  3. 3.
    Goddard WA, Dunning TH Jr, Hunt WJ, Hay PJ (1973) Acc Chem Res 6:368CrossRefGoogle Scholar
  4. 4.
    Bobrowicz FW, Goddard WA (1977) In: Schaefer III HF (ed) Methods of electronic structure theory, vol 4. Springer, Heidelberg, p 79Google Scholar
  5. 5.
    Hiberty PC, Shaik S (2007) J Comput Chem 28:137CrossRefGoogle Scholar
  6. 6.
    Shaik S, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, HobokenGoogle Scholar
  7. 7.
    Wu W, Su P, Shaik S, Hiberty PC (2011) Chem Rev 111:7557–7593CrossRefGoogle Scholar
  8. 8.
    Shaik S, Hiberty PC (2004) Rev Comp Chem 20:1–100Google Scholar
  9. 9.
    Hiberty PC, Humbel S, van Lenthe JH, Byrman C (1994) J Chem Phys 101:5969CrossRefGoogle Scholar
  10. 10.
    Hiberty PC, Flament J-P, Noizet E (1992) Chem Phys Lett 189:259CrossRefGoogle Scholar
  11. 11.
    Hiberty PC, Shaik S (2002) Theoret Chem Acc 108:255CrossRefGoogle Scholar
  12. 12.
    Angeli C (2009) J Comput Chem 30:1319CrossRefGoogle Scholar
  13. 13.
    Merer AJ, Mulliken RS (1969) Chem Rev 69:639CrossRefGoogle Scholar
  14. 14.
    Wilkinson G, Mulliken RS (1955) J Chem Phys 23:1895CrossRefGoogle Scholar
  15. 15.
    Dunning TH Jr, Hunt WJ, Goddard WA (1969) Chem Phys Lett 4:147CrossRefGoogle Scholar
  16. 16.
    Brooks BR, Schaefer HF III (1975) Chem Phys 9:75CrossRefGoogle Scholar
  17. 17.
    Schaefer HF III (1978) J Chem Phys 68:4839CrossRefGoogle Scholar
  18. 18.
    Buenker RJ, Shih S-K, Peyerimhoff SD (1979) Chem Phys 36:97CrossRefGoogle Scholar
  19. 19.
    Buenker RJ, Peyerimhoff SD, Shih S-K (1980) Chem Phys Lett 69:7–13CrossRefGoogle Scholar
  20. 20.
    Bender CF, Dunning TH Jr, Schaefer HF III, Goddard WA, Hunt WJ (1972) Chem Phys Lett 15:171CrossRefGoogle Scholar
  21. 21.
    Buenker RJ, Peyerimhoff SD (1975) Chem Phys 9:75CrossRefGoogle Scholar
  22. 22.
    McMurchie LE, Davidson ER (1977) J Chem Phys 66:2959CrossRefGoogle Scholar
  23. 23.
    Duben AJ, Goodman L, Pamuk HO, Sinanoglu O (1973) Theoret Chim Acta (Berl) 30:177CrossRefGoogle Scholar
  24. 24.
    Sinanoglu O (1969) Adv Chem Phys 14:237Google Scholar
  25. 25.
    Davidson ER (1996) J Phys Chem 100:6161CrossRefGoogle Scholar
  26. 26.
    Davidson ER, Jarzecki A (1998) Chem Phys Lett 285:155CrossRefGoogle Scholar
  27. 27.
    Lasorne B, Jornet-Somoza J, Meyer H-D, Lauvergnat D, Robb MA, Gatti F (2013) Spect Acta A.
  28. 28.
    Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrès L (1998) Chem Phys Lett 288:299CrossRefGoogle Scholar
  29. 29.
    Krebs S, Buenker RJ (1997) J Chem Phys 106:7208CrossRefGoogle Scholar
  30. 30.
    Müller T, Dallos M, Lischka H (1999) J Chem Phys 110:7176CrossRefGoogle Scholar
  31. 31.
    Schautz F, Filippi C (2004) J Chem Phys 120:10931CrossRefGoogle Scholar
  32. 32.
    Anderson AG, Goddard WA (2010) J Chem Phys 132:164110CrossRefGoogle Scholar
  33. 33.
    Zaitsevskii A, Malrieu J-P (1995) Int J Quantum Chem 55:117–125CrossRefGoogle Scholar
  34. 34.
    Garcıa-Cuesta I, Sanchez de Meras AMJ, Koch H (2003) J Chem Phys 118:8216CrossRefGoogle Scholar
  35. 35.
    Watts JD, Gwaltney SR, Bartlett RJ (1996) J Chem Phys 105:6979CrossRefGoogle Scholar
  36. 36.
    Wu W, Song L, Cao Z, Zhang Q, Shaik S (2002) J Phys Chem A 106:2721CrossRefGoogle Scholar
  37. 37.
    Song L, Wu W, Zhang Q, Shaik S (2004) J Comput Chem 25:472CrossRefGoogle Scholar
  38. 38.
    Chen Z, Song J, Shaik S, Hiberty PC, Wu W (2009) J Phys Chem A 113:11560CrossRefGoogle Scholar
  39. 39.
    Shaik S, Danovich D, Silvi B, Lauvergnat D, Hiberty PC (2005) Chem Eur J 11:6358CrossRefGoogle Scholar
  40. 40.
    Hiberty PC, Humbel S, Archirel P (1994) J Phys Chem 98:11697CrossRefGoogle Scholar
  41. 41.
    Song L, Wu W, Hiberty PC, Danovich D, Shaik S (2003) Chem Eur J 9:4540CrossRefGoogle Scholar
  42. 42.
    Hiberty PC, Megret C, Song L, Wu W, Shaik S (2006) J Am Chem Soc 128:2836CrossRefGoogle Scholar
  43. 43.
    Su P, Song L, Wu W, Hiberty PC, Shaik S (2007) J Comput Chem 28:185CrossRefGoogle Scholar
  44. 44.
    Braida B, Toulouse J, Caffarel M, Umrigar CJ (2011) J Chem Phys 134:084108CrossRefGoogle Scholar
  45. 45.
    Braida B, Hiberty PC (2013) Nat Chem 5:417CrossRefGoogle Scholar
  46. 46.
    Toulouse J, Umrigar CJ (2008) J Chem Phys 128:174101CrossRefGoogle Scholar
  47. 47.
    Chirgwin HB, Coulson CA (1950) Proc R Soc Lond Ser A 201:196CrossRefGoogle Scholar
  48. 48.
    Löwdin PO (1947) Ark Mat Astr Fysik 35A:9Google Scholar
  49. 49.
    Gallup GA, Norbeck JM (1973) Chem Phys Lett 21:495CrossRefGoogle Scholar
  50. 50.
    van Lenthe JH, Balint-Kurti GG (1983) J Chem Phys 78:5699CrossRefGoogle Scholar
  51. 51.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  52. 52.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  53. 53.
    Petruzielo FR, Toulouse J, Umrigar CJ (2012) J Chem Phys 136:124116CrossRefGoogle Scholar
  54. 54.
    Burkatzki M, Filippi C, Dolg M (2007) J Chem Phys 126, 234105. Basis sets and corresponding pseudopotentials are available online:
  55. 55.
    Song L, Wu W, Mo Y, Zhang Q (2003) XMVB: an ab initio Non-orthogonal Valence Bond Program, Xiamen University, Xiamen 361005, ChinaGoogle Scholar
  56. 56.
    Song L, Mo Y, Zhang Q, Wu W (2005) J Comput Chem 26:514CrossRefGoogle Scholar
  57. 57.
    Song L, Song J, Mo Y, Wu W (2009) J Comput Chem 30:399CrossRefGoogle Scholar
  58. 58.
    Umrigar CJ, Filippi C, Toulouse J. CHAMP, a Quantum Monte Carlo ab initio program, see:
  59. 59.
    Lindh R, Roos BO (1989) Int J Quantum Chem 35:813CrossRefGoogle Scholar
  60. 60.
    Serrano-Andrès L, Merchan M, Nebot-Gil I, Roos BO (1993) J Chem Phys 98:3151CrossRefGoogle Scholar
  61. 61.
    Thorsteinsson T, Cooper DL (1998) J Math Chem 23:105–126CrossRefGoogle Scholar
  62. 62.
    Domin D, Braida B, Lester WA Jr (2008) J Phys Chem A 112:8964CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Laboratoire de Chimie Théorique, CNRS, UMR 7616UPMC Université Paris 06Paris Cedex 05France
  3. 3.Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum ChemistryHebrew University of JerusalemJerusalemIsrael
  4. 4.Laboratoire de Chimie Physique, CNRS UMR8000, Bat. 349Université de Paris-SudOrsay CédexFrance

Personalised recommendations