Theoretical Chemistry Accounts

, 133:1436 | Cite as

Accurate first principles calculations on chlorine fluoride ClF and its ions ClF±

  • Athanassios A. Vassilakis
  • Apostolos Kalemos
  • Aristides Mavridis
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

The present work focuses on the first (lightest) of the six diatomic interhalogens, namely ClF and its ions ClF+ and ClF, in an effort to better understand these interesting species. Toward this end, we have performed highly correlated all electron ab initio calculations of multireference (MRCI) and single-reference coupled-cluster calculations, employing quintuple and sextuple correlation consistent basis sets. Within the Λ − S ansatz, we have examined all 12 states of ClF correlating adiabatically with the first energy channel, all 23 states of ClF+ correlating with the first three channels, and three states out of four of ClF correlating with the first two channels Cl + F and Cl + F. Full potential energy curves at the MRCI/quintuple zeta level have been constructed for 12, 21, and 3 states of ClF, ClF+, and ClF, respectively. After correcting for core–subvalence and scalar relativistic effects, albeit small as expected, and spin–orbit interactions, most of our results are in excellent agreement with available experimental data. Some lingering questions have been definitely settled. Our final recommended binding energies (D 0 in kcal/mol) and equilibrium bond distances (r e in Å) for ClF (X 1Σ+), ClF+ (X 2Π), and ClF (X 2Σ+) are [60.35, 1.6284], [67.40, 1.5357], and [29.80, 2.151], respectively. The adiabatic electron affinity of ClF, ClF (X 1Σ+) + e → ClF (X 2Σ+), is EAad = 2.25 ± 0.01 eV about 0.6 eV smaller than the suggested experimental value which is certainly wrong.

Keywords

Interhalogen ClF Ab initio 

Notes

Acknowledgments

One of us (A.V.) expresses his gratitude to Dr. C. N. Sakellaris for helpful discussions.

References

  1. 1.
    Dicciani NK, Burrows C, Greenspan A, Stang PJ (2003) Chem Eng News (number 36), 81, pp. 48(F), 62(Cl), 96(Br), and 130(I) Google Scholar
  2. 2.
    Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth–Heinemann, Oxford, pp 824–825Google Scholar
  3. 3.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV constants of diatomic molecules, Van Nostrand Reinhold Co, NYGoogle Scholar
  4. 4.
    Wahrhaftig AL (1942) J Chem Phys 10:248CrossRefGoogle Scholar
  5. 5.
    Gilbert DA, Roberts A, Griswold PA (1949) Phys Rev 76:1723CrossRefGoogle Scholar
  6. 6.
    Stricker W, Krauss L (1968) Z Naturforsch 23a:1116Google Scholar
  7. 7.
    Dibeler VH, Walker JA, McCulloh KE (1970) J Chem Phys 53:4414CrossRefGoogle Scholar
  8. 8.
    Davis RE, Muenter JS (1972) J Chem Phys 57:2836CrossRefGoogle Scholar
  9. 9.
    Nordine PC (1974) J Chem Phys 61:224CrossRefGoogle Scholar
  10. 10.
    Combe RD, Pilipovich D, Horne RK (1978) J Phys Chem 82:2484CrossRefGoogle Scholar
  11. 11.
    Willis RE Jr, Clark WW III (1980) J Chem Phys 72:4946CrossRefGoogle Scholar
  12. 12.
    McDermid IS (1981) J Chem Soc Faraday Trans 2(77):519CrossRefGoogle Scholar
  13. 13.
    McDermid IS, Laudenslager JB (1981) Chem Phys Lett 79:370CrossRefGoogle Scholar
  14. 14.
    Alekseev VA, Setser DW (1997) J Chem Phys 107:4771CrossRefGoogle Scholar
  15. 15.
    Jenkins FA (1953) J Opt Soc Am 43:425Google Scholar
  16. 16.
    Alekseev VA, Setser DW, Tellinghuisen J (1999) J Mol Spectrosc 61:194Google Scholar
  17. 17.
    Alekseev VA, Setser DW, Tellinghuisen J (1999) J Mol Spectrosc 195:162CrossRefGoogle Scholar
  18. 18.
    Schmitz H, Schumacher HJ (1947) Z Naturforsch 2a:359Google Scholar
  19. 19.
    Schumacher HJ, Schmitz H, Brodersen PH (1950) Anales Asoc Quim Argent 38:98Google Scholar
  20. 20.
    Straub PA, McLean AD (1974) Theor Chim Acta 32:227CrossRefGoogle Scholar
  21. 21.
    Ewig CS, Sur A, Banna MS (1981) J Chem Phys 75:5002CrossRefGoogle Scholar
  22. 22.
    Scharf P, Ahlrichs R (1985) Chem Phys 100:237CrossRefGoogle Scholar
  23. 23.
    Darvesh KV, Boyd RJ, Peyerimhoff SD (1988) Chem Phys 121:361CrossRefGoogle Scholar
  24. 24.
    Peterson KA, Woods RC (1990) J Chem Phys 92:7412CrossRefGoogle Scholar
  25. 25.
    Perera SA, Bartlett RJ (1993) Chem Phys Lett 216:606 and references thereinGoogle Scholar
  26. 26.
    deJong WA, Styszynski J, Visscher L, Nieuwpoort WC (1998) J Chem Phys 108:5177 and references thereinGoogle Scholar
  27. 27.
    Alekseyev AB, Liebermann HP, Buenker RJ, Koch KB (2000) J Chem Phys 112:2274 and references thereinCrossRefGoogle Scholar
  28. 28.
    Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33CrossRefGoogle Scholar
  29. 29.
    Buenker RJ, Peyerimhoff SD (1975) Theor Chim Acta 39:217CrossRefGoogle Scholar
  30. 30.
    Buenker RJ, Peyerimhoff SD, Butsher W (1978) Mol Phys 35:771CrossRefGoogle Scholar
  31. 31.
    Ricca A (2000) Chem Phys Lett 323:498CrossRefGoogle Scholar
  32. 32.
    Horný L, Sattelmeyer KW, Schaefer HF III (2003) J Chem Phys 119:11615CrossRefGoogle Scholar
  33. 33.
    Chen L, Woon DE, Dunning TH Jr (2009) J Phys Chem A 113:12645CrossRefGoogle Scholar
  34. 34.
    Chen L, Woon DE, Dunning Jr. TH (2013) J Phys Chem A 117:4251 and references therein. Google Scholar
  35. 35.
    Kalemos A, Mavridis A (2009) J Phys Chem A 113:13972CrossRefGoogle Scholar
  36. 36.
    Kalemos A, Mavridis A (2011) J Phys Chem A 115:2378 and references thereinGoogle Scholar
  37. 37.
    Irsa AP, Friedman L (1958) J Inorg Nucl Chem 6:77CrossRefGoogle Scholar
  38. 38.
    Anderson CP, Mamantov G, Bull WE, Grimm FA, Carver JC, Carlson TA (1971) Chem Phys Lett 12:137CrossRefGoogle Scholar
  39. 39.
    De Kock RL, Higginson BR, Lloyd DR, Breeze A, Cruickshank DWJ, Armstrong DR (1972) Mol Phys 24:1059CrossRefGoogle Scholar
  40. 40.
    Radziemski LJ, Kaufmann V (1969) J Opt Soc Am 59:424CrossRefGoogle Scholar
  41. 41.
    Harland P, Thynne JCJ (1969) J Phys Chem 73:4031CrossRefGoogle Scholar
  42. 42.
    Dispert H, Lacmann K (1978) Int J Mass Spectrom Ion Phys 28:49CrossRefGoogle Scholar
  43. 43.
    Illenberger E, Scheunemann HU, Baumgärtel H (1979) Chem Phys 37:21CrossRefGoogle Scholar
  44. 44.
    Dudlin AV, Gorokhov LN, Baluev AV (1979) Izv Akad Nauk SSR Ser Khi 11:2408Google Scholar
  45. 45.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF III (2002) Chem Rev 102:231CrossRefGoogle Scholar
  46. 46.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  47. 47.
    Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) J Chem Phys 114:108CrossRefGoogle Scholar
  48. 48.
    Law CK, Chien SH, Li WK, Cheung YS (2002) J Phys Chem A 106:11271CrossRefGoogle Scholar
  49. 49.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  50. 50.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  51. 51.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244CrossRefGoogle Scholar
  52. 52.
    Wilson AK, van Mourik T, Dunning TH Jr (1997) J Mol Struct (THEOCHEM) 388:399Google Scholar
  53. 53.
    Woon DH, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  54. 54.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  55. 55.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718CrossRefGoogle Scholar
  56. 56.
    Knowles PJ, Hampel C, Werner HJ (1993) J Chem Phys 99:5219CrossRefGoogle Scholar
  57. 57.
    Knowles PJ, Hampel C, Werner HJ (2000) J Chem Phys 112:3106CrossRefGoogle Scholar
  58. 58.
    Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803CrossRefGoogle Scholar
  59. 59.
    Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514CrossRefGoogle Scholar
  60. 60.
    Douglas M, Kroll NM (1974) Ann Phys 82:89CrossRefGoogle Scholar
  61. 61.
    Hess BA (1985) Phys Rev A 32:756CrossRefGoogle Scholar
  62. 62.
    Jansen HB, Ross P (1969) Chem Phys Lett 3:140CrossRefGoogle Scholar
  63. 63.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  64. 64.
    Dunham JL (1932) Phys Rev 41:721CrossRefGoogle Scholar
  65. 65.
    Herzberg G (1950) Molecular spectra and molecular structure 1. Spectra of diatomic molecules, 2nd edn. D. van Nostrand Co, Inc., CanadaGoogle Scholar
  66. 66.
    Langhoff RS, Davidson ER (1974) Int J Quantum Chem 8:61CrossRefGoogle Scholar
  67. 67.
    Davidson ER, Silver DW (1977) Chem Phys Lett 52:403CrossRefGoogle Scholar
  68. 68.
    Sakellaris CN, Mavridis A (2012) J Chem Phys 137:034309CrossRefGoogle Scholar
  69. 69.
    CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (Helgaker T, Jensen HJ, Jørgensen P, Olsen J), and ECP routines by Mitin AV, van Wüllen C. For the current version, see http://www.cfour.de
  70. 70.
    MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang MGoogle Scholar
  71. 71.
    Kramida A, Ralchenko Yu, Reader J, and NIST ASD Team (2012). NIST atomic spectra database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [5 June 2013]. National Institute of Standards and Technology, Gaithersburg, MD
  72. 72.
    Tzeli D, Mavridis A (2003) J Chem Phys 118:4984CrossRefGoogle Scholar
  73. 73.
    Ewing JJ, Tigelaar HL, Flygare WH (1972) J Chem Phys 56:1957CrossRefGoogle Scholar
  74. 74.
    McGurk J, Noris CL, Tigelaar HL, Flygare WH (1973) J Chem Phys 58:3118CrossRefGoogle Scholar
  75. 75.
    Green J (1974) Adv Chem Phys 25:179Google Scholar
  76. 76.
    Janda KC, Klemperer W, Novick SE (1976) J Chem Phys 64:2698CrossRefGoogle Scholar
  77. 77.
    Fabricant B, Muenter JS (1977) J Chem Phys 66:5274CrossRefGoogle Scholar
  78. 78.
    Magoulas I, Kalemos A, Mavridis A (2013) J Chem Phys 138:104312CrossRefGoogle Scholar
  79. 79.
    Edlén B (1969) Sol Phys 9:439CrossRefGoogle Scholar
  80. 80.
    Berzinsh U, Gustafson M, Hanstorp D, Klinkmüller A, Ljungblad U, Martensson-Pendrill AM (1995) Phys Rev A 51:231CrossRefGoogle Scholar
  81. 81.
    Blondel C, Delsart C, Goldfarb F (2001) J Phys B 34:L281CrossRefGoogle Scholar
  82. 82.
    Andersen T (1991) Phys Scr 43:23CrossRefGoogle Scholar
  83. 83.
    Hogrere H (1998) Phys Scr 58:25CrossRefGoogle Scholar
  84. 84.
    Emsley J (1991) The elements, 2nd edn. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Athanassios A. Vassilakis
    • 1
  • Apostolos Kalemos
    • 1
  • Aristides Mavridis
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations