Advertisement

Theoretical Chemistry Accounts

, 133:1433 | Cite as

A theoretical study of possible point defects incorporated into α-alumina deposited by chemical vapor deposition

  • C. ÅrhammarEmail author
  • F. Silvearv
  • A. Bergman
  • S. Norgren
  • H. Pedersen
  • R. Ahuja
Regular Article
Part of the following topical collections:
  1. Modeling Chemical Vapor Deposition and Atomic Layer Deposition

Abstract

The energetics and electronic structure of carbon, chlorine, hydrogen, and sulfur in α-Al2O3 was investigated by first principles and thermodynamical calculations. These species are present in the gas phase during the synthesis of α-Al2O3 by chemical vapor deposition (CVD) but little is known of their solubility in this compound. The heat of formation from standard reference states of the elements varying the chemical potential of each element was calculated. An attempt to model the actual conditions in the CVD process was made, using the species and solid compounds present in a common CVD process as reference states. Our calculations suggest that sulfur from the catalyzing agent H2S will not solve in α-Al2O3 during deposition by CVD. It is found that the neutral chlorine and hydrogen interstitial defects display the lowest heat of formation, 281 and 280 kJ/mol, respectively, at the modeled CVD conditions. This energy is too high in order for neutral defects to form during CVD of α-Al2O3 at any significant amounts. The charged defects and their compensation were studied. Carbon substituting oxygen is found to be energetically favored under the modeled CVD conditions, considering carbon dioxide as competing species to solid solubility in α-Al2O3 at an energy of −128 kJ/mol. However, care needs to be taken when choosing the possible competing carbon-containing phases. Compensation of carbon substituting for oxygen by oxygen vacancies takes place at 110 kJ/mol from standard reference states, graphite, fcc-Al and O2. The carbon solubility in Al2O3 is difficult to measure with standard analysis techniques such as X-ray diffraction and energy dispersive X-ray spectroscopy, but several stable compounds in the Al–C–O are available in the literature.

Keywords

Alumina CVD Carbon Chlorine Hydrogen Sulfur Ab initio 

Notes

Acknowledgments

We would like to acknowledge the Swedish Research Council (VR) for financial supports. Resources of the Swedish National Infrastructure for Computing (SNIC), National Supercomputer Center (NSC), and the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) are also gratefully acknowledged.

References

  1. 1.
    Schintlmeister W, Wallgram W, Kanz J, Gigl K (1984) Wear 100:153CrossRefGoogle Scholar
  2. 2.
    Lindström J, Schanchner H (1980) In: Hinterman HE (ed) Proceedings of the 3rd European conference. CVD, Neuchtel, p 208Google Scholar
  3. 3.
    Lindström J, Stjernberg KG (1985) In: Carlsson J-O, Lindström J (eds) Proceedings of the 5th European conference. CVD, Uppsala, p 169Google Scholar
  4. 4.
    Lux B, Colombier C, Altena H, Stjernberg K (1986) Thin Solid Films 138:49CrossRefGoogle Scholar
  5. 5.
    Fredriksson E, Carlsson J-O (1995) Thin Solid Films 263:28CrossRefGoogle Scholar
  6. 6.
    Colmet R, Naslain R (1982) Wear 80:221CrossRefGoogle Scholar
  7. 7.
    Kim J-G, Park C-S, Chun JS (1982) Thin Solid Films 97:97CrossRefGoogle Scholar
  8. 8.
    Ruppi S (2005) Int J Refract Met Hard Mater 23:306–316Google Scholar
  9. 9.
    Ljungberg B (2001) Ep 0784 715 b1Google Scholar
  10. 10.
    Ljungberg B (1998) Usp 5.66 782Google Scholar
  11. 11.
    Smith UKH, Lindström JN (1985) Usp 4619866Google Scholar
  12. 12.
    Blomqvist A, Arhammar C, Pedersen H, Silvearv F, Norgren S, Ahuja R (2011) Surf Coat Technol 206:1771–1779CrossRefGoogle Scholar
  13. 13.
    Altena H, Colombier C, Lux B (1983) In: Bloem J (ed) Proceedings of the 4th European conference. CVD, Eindhoven, p 451Google Scholar
  14. 14.
    Katrein M, Schintlmeister W, Wallgram W, Schleinkofer U (2003) Surf Coat Technol 163(164):183Google Scholar
  15. 15.
    Björmander C (2006) Surf Coat Technol 201:4032CrossRefGoogle Scholar
  16. 16.
    Russell WC, Strandberg C (1996) Int J Refract Met Hard Mater 14:51–58Google Scholar
  17. 17.
    Mårtensson P (2006) Surf Coat Technol 200:3676CrossRefGoogle Scholar
  18. 18.
    Schmidt BW, Rogers BR, Gren CK, Hanusa TP (2000) Thin Solid Films 518:3658CrossRefGoogle Scholar
  19. 19.
    Andersson Jon M, Wallin E, Chirita V, Munger EP, Helmersson U (2005) Phys Rev B 71:014101CrossRefGoogle Scholar
  20. 20.
    Reuter K, Scheffler M (2001) Phys Rev B 65:035406Google Scholar
  21. 21.
    Batyrev IG, Alavi A, Finnis MW (2000) Phys Rev B 62:4698Google Scholar
  22. 22.
    Rohrer J, Ziambaras E, Hyldgaard P (2010) J Phys Condens Matter 22:015004Google Scholar
  23. 23.
    Rohrer J, Ziambaras E, Hyldgaard P (2011) Comput Phys Commun 182:1814–1818Google Scholar
  24. 24.
    Pingfang S, Sundman B (2004) SGTE substances database v3Google Scholar
  25. 25.
    Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New YorkGoogle Scholar
  26. 26.
    Saunders N, Miodownik AP (1998) CALPHAD (calculation of the phase diagram: a comprehensive guide). Pergamon Press, LondonGoogle Scholar
  27. 27.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186Google Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  29. 29.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  30. 30.
    Bruneval F (2009) Phys Rev Lett 103:176403CrossRefGoogle Scholar
  31. 31.
    Rinke P, Janotti A, Scheffler M, Van deWalle CG (2009) Phys Rev Lett 102:026402CrossRefGoogle Scholar
  32. 32.
    Makov G, Payne MC (1995) Phys Rev B 51:4014CrossRefGoogle Scholar
  33. 33.
    Höglund A, Castleton CWM, Mirbt S (2006) Phys Rev B 73:035215CrossRefGoogle Scholar
  34. 34.
    Persson C, Zhao Y-J, Lany S, Zunger A (2005) Phys Rev B 72:035211CrossRefGoogle Scholar
  35. 35.
    Vande Walle C, Neugebauer J (2004) J Appl Phys 95:8Google Scholar
  36. 36.
    Anders A (2008) Cathodic arcs: from fractal spots to energetic condensation. Springer, New YorkCrossRefGoogle Scholar
  37. 37.
    Ohring M (1992) Materials science of thin films, 2nd edn. Academic Press, New YorkGoogle Scholar
  38. 38.
    Evans BD, Stapelbroek M (1978) Phys Rev B 18:7089CrossRefGoogle Scholar
  39. 39.
    Akselrod MS, Kortov VS (1990) Radiat Prot Dosim 33:123Google Scholar
  40. 40.
    Richard C, Catlow A, Sokol AA, Walsh A (2000) Phys Rev B 63:024102CrossRefGoogle Scholar
  41. 41.
    Vande Walle CG, Neugebauer J (2003) Nature 423:626CrossRefGoogle Scholar
  42. 42.
    Lihrmann J-M, Tirlocq J, Descamps P, Cambier F (1999) J Eur Ceram Soc 19:2781–2787CrossRefGoogle Scholar
  43. 43.
    Lihrmann J-M (2008) J Eur Ceram Soc 28:643–647CrossRefGoogle Scholar
  44. 44.
    Jiang K, Sarakinos K, Konstantinidis S, Schneider JM (2010) J Phys D Appl Phys 43:325202CrossRefGoogle Scholar
  45. 45.
    Aylward G, Findlay T (1998) SI chemical data, 4th edn. Wiley, New YorkGoogle Scholar
  46. 46.
    Kurth S, Perdew JP, Blaha P (1999) Int J Quant Chem 75:889–909Google Scholar
  47. 47.
    Harl J, Kresse G (2008) Phys Rev B 77:045136Google Scholar
  48. 48.
    Wolverton C, Hass K (2010)  Phys Rev B 63:024102Google Scholar
  49. 49.
    Lee W, Lagerlof K (1985) J Electron Technol 2:12777Google Scholar
  50. 50.
    Weber JR, Janotti A, Van de Walle CG (2009) Microelectron Eng 86:1756–1759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Århammar
    • 1
    Email author
  • F. Silvearv
    • 2
  • A. Bergman
    • 3
  • S. Norgren
    • 1
    • 4
  • H. Pedersen
    • 5
  • R. Ahuja
    • 3
  1. 1.Sandvik CoromantStockholmSweden
  2. 2.Applied Physics, Division of Material Science, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden
  3. 3.Division of Materials Theory, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Ångström Laboratory, Department of Engineering Sciences, Applied Materials Science, Tribology GroupUppsala UniversityUppsalaSweden
  5. 5.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations