Theoretical Chemistry Accounts

, 133:1425 | Cite as

Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2

  • Jeffery S. Boschen
  • Daniel Theis
  • Klaus Ruedenberg
  • Theresa L. Windus
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

The diatomic carbon molecule has a complex electronic structure with a large number of low-lying electronic excited states. In this work, the potential energy curves (PECs) of the four lowest lying singlet states (\(X^{1} \Sigma^{ + }_{g}\), \(A^{1} \Pi_{u}\), \(B^{1} \Delta_{g}\), and \(B^{\prime1} \Sigma^{ + }_{g}\)) were obtained by high-level ab initio calculations. Valence electron correlation was accounted for by the correlation energy extrapolation by intrinsic scaling (CEEIS) method. Additional corrections to the PECs included core–valence correlation and relativistic effects. Spin–orbit corrections were found to be insignificant. The impact of using dynamically weighted reference wave functions in conjunction with CEEIS was examined and found to give indistinguishable results from the even weighted method. The PECs showed multiple curve crossings due to the \(B^{1} \Delta_{g}\) state as well as an avoided crossing between the two \(^{1} \Sigma^{ + }_{g}\) states. Vibrational energy levels were computed for each of the four electronic states, as well as rotational constants and spectroscopic parameters. Comparison between the theoretical and experimental results showed excellent agreement overall. Equilibrium bond distances are reproduced to within 0.05 %. The dissociation energies of the states agree with experiment to within ~0.5 kcal/mol, achieving “chemical accuracy.” Vibrational energy levels show average deviations of ~20 cm−1 or less. The \(B^{1} \Delta_{g}\) state shows the best agreement with a mean absolute deviation of 2.41 cm−1. Calculated rotational constants exhibit very good agreement with experiment, as do the spectroscopic constants.

Keywords

Diatomic carbon Ab initio electronic structure Dissociation Configuration interaction Spectroscopic properties Multi-configurational wave functions 

Notes

Acknowledgments

The authors thank Dr. Laimutis Bytautas and Dr. Luke Roskop for helpful discussions related to this work. This research is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

Supplementary material

214_2013_1425_MOESM1_ESM.docx (201 kb)
Supplementary material 1 (DOCX 200 kb)

References

  1. 1.
    Vardya MS (1970) Ann Rev Astron Astr 8:87–114CrossRefGoogle Scholar
  2. 2.
    Mayer P, O’Dell CR (1968) Astrophys J 153:951–962CrossRefGoogle Scholar
  3. 3.
    Souza SP, Lutz BL (1977) Astrophys J 216(1):L49–L51CrossRefGoogle Scholar
  4. 4.
    Bleekrode R, Nieuwpoort WC (1965) J Chem Phys 43(10):3680–3687CrossRefGoogle Scholar
  5. 5.
    Fox JG, Herzberg G (1937) Phys Rev 52(6):0638–0643CrossRefGoogle Scholar
  6. 6.
    Ballik EA, Ramsay DA (1959) J Chem Phys 31(4):1128CrossRefGoogle Scholar
  7. 7.
    Ballik EA, Ramsay DA (1963) Astrophys J 137(1):84–101CrossRefGoogle Scholar
  8. 8.
    Marenin IR, Johnson HR (1970) J Quant Spectrosc Radiat Transfer 10(4):305–309CrossRefGoogle Scholar
  9. 9.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  10. 10.
    Amiot C (1983) Astrophys J Suppl S 52(3):329–340CrossRefGoogle Scholar
  11. 11.
    Douay M, Nietmann R, Bernath PF (1988) J Mol Spectrosc 131(2):250–260CrossRefGoogle Scholar
  12. 12.
    Douay M, Nietmann R, Bernath PF (1988) J Mol Spectrosc 131(2):261–271CrossRefGoogle Scholar
  13. 13.
    Davis SP, Abrams MC, Phillips JG, Rao MLP (1988) J Opt Soc Am B Opt Phys 5(10):2280–2285CrossRefGoogle Scholar
  14. 14.
    Martin M (1992) J Photochem Photobiol A 66(3):263–289CrossRefGoogle Scholar
  15. 15.
    Gong MX, Bao YH, Urdahl RS, Jackson WM (1994) Chem Phys Lett 217(3):210–215CrossRefGoogle Scholar
  16. 16.
    Wakabayashi T, Ong AL, Kratschmer W (2002) J Chem Phys 116(14):5996–6001CrossRefGoogle Scholar
  17. 17.
    Chan MC, Yeung SH, Wong YY, Li YF, Chan WM, Yim KH (2004) Chem Phys Lett 390(4–6):340–346CrossRefGoogle Scholar
  18. 18.
    Tanabashi A, Hirao T, Amano T, Bernath PF (2007) Astrophys J Suppl S 169(2):472–484CrossRefGoogle Scholar
  19. 19.
    Brooke JSA, Bernath PF, Schmidt TW, Bacskay GB (2013) J Quant Spectrosc Radiat Transfer 124:11–20CrossRefGoogle Scholar
  20. 20.
    Fougere PF, Nesbet RK (1966) J Chem Phys 44(1):285–298CrossRefGoogle Scholar
  21. 21.
    Langhoff SR, Sink ML, Pritchard RH, Kern CW, Strickler SJ, Boyd MJ (1977) J Chem Phys 67(3):1051–1060CrossRefGoogle Scholar
  22. 22.
    Chabalowski CF, Peyerimhoff SD, Buenker RJ (1983) Chem Phys 81(1–2):57–72CrossRefGoogle Scholar
  23. 23.
    Kraemer WP, Roos BO (1987) Chem Phys 118(3):345–355CrossRefGoogle Scholar
  24. 24.
    Bruna PJ, Wright JS (1991) Chem Phys 157(1–2):111–121CrossRefGoogle Scholar
  25. 25.
    Peterson KA (1995) J Chem Phys 102(1):262–277CrossRefGoogle Scholar
  26. 26.
    Boggio-Pasqua M, Voronin AI, Halvick P, Rayez JC (2000) J Mol Struct (Theochem) 531:159–167CrossRefGoogle Scholar
  27. 27.
    Muller T, Dallos M, Lischka H, Dubrovay Z, Szalay PG (2001) Theor Chem Acc 105(3):227–243CrossRefGoogle Scholar
  28. 28.
    Abrams ML, Sherrill CD (2004) J Chem Phys 121(19):9211–9219CrossRefGoogle Scholar
  29. 29.
    Sherrill CD, Piecuch P (2005) J Chem Phys 122(12):124104CrossRefGoogle Scholar
  30. 30.
    Kokkin DL, Bacskay GB, Schmidt TW (2007) J Chem Phys 126(8):084302CrossRefGoogle Scholar
  31. 31.
    Mahapatra US, Chattopadhyay S, Chaudhuri RK (2008) J Chem Phys 129(2):24–108CrossRefGoogle Scholar
  32. 32.
    Varandas AJC (2008) J Chem Phys 129(23):234103CrossRefGoogle Scholar
  33. 33.
    Purwanto W, Zhang SW, Krakauer H (2009) J Chem Phys 130(9):094107CrossRefGoogle Scholar
  34. 34.
    Zhang X-N, Shi D-H, Sun J-F, Zhu Z-L (2011) Chin Phys B 20 (4)Google Scholar
  35. 35.
    Shi D, Zhang X, Sun J, Zhu Z (2011) Mol Phys 109(11):1453–1465CrossRefGoogle Scholar
  36. 36.
    Su PF, Wu JF, Gu JJ, Wu W, Shaik S, Hiberty PC (2011) J Chem Theory Comput 7(1):121–130CrossRefGoogle Scholar
  37. 37.
    Booth GH, Cleland D, Thom AJW, Alavi A (2011) J Chem Phys 135(8):084104CrossRefGoogle Scholar
  38. 38.
    Jiang W, Wilson AK (2011) J Chem Phys 134 (3)Google Scholar
  39. 39.
    Angeli C, Cimiraglia R, Pastore M (2012) Mol Phys 110(23):2963–2968CrossRefGoogle Scholar
  40. 40.
    Shaik S, Danovich D, Wu W, Su P, Rzepa HS, Hiberty PC (2012) Nat Chem 4(3):195–200CrossRefGoogle Scholar
  41. 41.
    Liu W, Hanauer M, Koehn A (2013) Chem Phys Lett 565:122–127CrossRefGoogle Scholar
  42. 42.
    Deskevich MP, Nesbitt DJ, Werner HJ (2004) J Chem Phys 120(16):7281–7289CrossRefGoogle Scholar
  43. 43.
    Bytautas L, Ruedenberg K (2004) J Chem Phys 121(22):10905–10918CrossRefGoogle Scholar
  44. 44.
    Bytautas L, Ruedenberg K (2004) J Chem Phys 121(22):10919–10934CrossRefGoogle Scholar
  45. 45.
    Bytautas L, Ruedenberg K (2005) J Chem Phys 122(15):154110CrossRefGoogle Scholar
  46. 46.
    Bytautas L, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127(16):164317CrossRefGoogle Scholar
  47. 47.
    Bytautas L, Ruedenberg K (2010) J Chem Phys 132(7):4307Google Scholar
  48. 48.
    Bytautas L, Matsunaga N, Scuseria GE, Ruedenbereg K (2012) J Phys Chem A 116(7):1717–1729CrossRefGoogle Scholar
  49. 49.
    Bytautas L, Matsunaga N, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127(20):204301CrossRefGoogle Scholar
  50. 50.
    Bytautas L, Matsunaga N, Nagata T, Gordon MS, Ruedenberg K (2007) J Chem Phys 127(20):204313CrossRefGoogle Scholar
  51. 51.
    Bytautas L, Matsunaga N, Ruedenberg K (2010) J Chem Phys 132(7):074307CrossRefGoogle Scholar
  52. 52.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  53. 53.
    Cheung LM, Sundberg KR, Ruedenberg K (1979) Int J Quantum Chem 16(5):1103–1139CrossRefGoogle Scholar
  54. 54.
    Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71(1):41–49CrossRefGoogle Scholar
  55. 55.
    Ruedenberg K, Schmidt MW, Gilbert MM (1982) Chem Phys 71(1):51–64CrossRefGoogle Scholar
  56. 56.
    Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71(1):65–78CrossRefGoogle Scholar
  57. 57.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48(2):157–173CrossRefGoogle Scholar
  58. 58.
    Dunning TH (1989) J Chem Phys 90(2):1007–1023CrossRefGoogle Scholar
  59. 59.
    Wilson AK, van Mourik T, Dunning TH (1996) J Mol Struct (Theochem) 388:339–349Google Scholar
  60. 60.
    Klopper W, Kutzelnigg W (1986) J Mol Struct (Theochem) 28:339–356CrossRefGoogle Scholar
  61. 61.
    Kutzelnigg W (1994) Int J Quantum Chem 51(6):447–463CrossRefGoogle Scholar
  62. 62.
    Lowdin PO (1955) Phys Rev 97(6):1474–1489CrossRefGoogle Scholar
  63. 63.
    The multistate CEEIS method is included in all versions of GAMESS that occur after May 1, 2013Google Scholar
  64. 64.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106(23):9639–9646CrossRefGoogle Scholar
  65. 65.
    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286(3–4):243–252CrossRefGoogle Scholar
  66. 66.
    Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8(1):61–72CrossRefGoogle Scholar
  67. 67.
    Douglas M, Kroll NM (1974) Ann Phys 82(1):89–155CrossRefGoogle Scholar
  68. 68.
    Fedorov DG, Nakajima T, Hirao K (2001) Chem Phys Lett 335(3–4):183–187CrossRefGoogle Scholar
  69. 69.
    Nakajima T, Hirao K (2005) Monatsh Chem 136(6):965–986CrossRefGoogle Scholar
  70. 70.
    de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114(1):48–53CrossRefGoogle Scholar
  71. 71.
    Fedorov DG, Gordon MS (2000) J Chem Phys 112(13):5611–5623CrossRefGoogle Scholar
  72. 72.
    Aquilante F, De Vico L, Ferre N, Ghigo G, Malmqvist P-A, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andres L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31(1):224–247CrossRefGoogle Scholar
  73. 73.
    Colbert DT, Miller WH (1992) J Chem Phys 96(3):1982–1991CrossRefGoogle Scholar
  74. 74.
    Blatt JM (1967) J Comput Phys 1(3):382–396CrossRefGoogle Scholar
  75. 75.
    Zeng T, Fedorov DG, Klobukowski M (2011) J Chem Phys 134 (2)Google Scholar
  76. 76.
    Urdahl RS, Bao YH, Jackson WM (1991) Chem Phys Lett 178(4):425–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jeffery S. Boschen
    • 1
  • Daniel Theis
    • 1
  • Klaus Ruedenberg
    • 1
  • Theresa L. Windus
    • 1
  1. 1.Department of Chemistry and Ames Laboratory (USDOE)Iowa State UniversityAmesUSA

Personalised recommendations