Advertisement

Theoretical Chemistry Accounts

, 132:1413 | Cite as

MULTIMODE calculations of the infrared spectra of H 7 + and D 7 + using ab initio potential energy and dipole moment surfaces

  • Chen Qu
  • Rita Prosmiti
  • Joel M. BowmanEmail author
Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

We present a new ab initio potential energy surface (PES) and a dipole moment surface (DMS) for H 7 + in the bound region. The PES is a linear least-squares fit to 42,525 ab initio points whose energies were computed with CCSD(T)-F12b/cc-pVQZ-F12 theory, and the DMS is a fit to dipole moments calculated at MP2 level of theory. The PES and DMS describe the bound region of H 7 + precisely. MULTIMODE (MM) calculations of the infrared spectra of H 7 + and D 7 + were performed using the new PES and DMS. These calculations were carried out at the lowest three stationary points using the single-reference version of MM, and only the five high-frequency modes were considered. The calculated spectra agree well with the recent experimental predissociation action spectra.

Keywords

H7+ Ab initio potential energy surface Large-amplitude motion MULTIMODE Infrared spectrum 

Notes

Acknowledgments

C.Q. and J.M.B. thank NASA for financial support through Grant No. 370NNX12AF42G from the NASA Astrophysics Research and Analysis program. R.P. thanks the Centro de Calculo (IFF-CSIC) and SGAI (CSIC) for allocation of computer time. Supports from MICINN, Spain, Grant No. FIS2011-29596-C02-01, Consolider-Ingenio 2010 Programme CSD2009-00038 (MICINN), and COST Action CM1002 (CODECS) are gratefully acknowledged by R.P. We thank Mike Duncan for sending his experimental spectra.

Supplementary material

214_2013_1413_MOESM1_ESM.pdf (24 kb)
PDF (24 KB)

References

  1. 1.
    Duley WW (1996) Astrophys J 471:L57CrossRefGoogle Scholar
  2. 2.
    Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258CrossRefGoogle Scholar
  3. 3.
    Snow TP, Bierbaum VM (2008) Annu Rev Anal Chem 1:229CrossRefGoogle Scholar
  4. 4.
    Geballe TR, Oka T (1996) Nature 384:334CrossRefGoogle Scholar
  5. 5.
    Xie Z, Braams BJ, Bowman JM (2005) J Chem Phys 122:224307CrossRefGoogle Scholar
  6. 6.
    Aguado A, Barragán P, Prosmiti R, and Delgado-Barrio G, Villarreal P, Roncero O (2010) J Chem Phys 133:024306CrossRefGoogle Scholar
  7. 7.
    Cheng TC, Bandyopadyay B, Wang Y, Carter S, Braams BJ, Bowman JM, Duncan MA (2010) J Phys Chem Lett 1:758CrossRefGoogle Scholar
  8. 8.
    Cheng TC, Jiang L, Asmis KR, Wang Y, Bowman JM, Ricks AM, Duncan MA (2012) J Phys Chem Lett 3:3160CrossRefGoogle Scholar
  9. 9.
    Lin Z, McCoy AB (2012) J Phys Chem Lett 3:3690CrossRefGoogle Scholar
  10. 10.
    Lin Z, McCoy AB (2013). J Phys Chem A. doi: 10.1021/jp4014652
  11. 11.
    Pérez de Tudela R, Barragán P, Prosmiti R, Villarreal P, Delgado-Barrio G (2011) J Phys Chem A 115:2483CrossRefGoogle Scholar
  12. 12.
    Barragán P, Pérez de Tudela R, Prosmiti R, Villarreal P, Delgado-Barrio G (2011) Phys Scr 84:028109CrossRefGoogle Scholar
  13. 13.
    Song H, Lee SY, Yang M, Lu Y (2013) J Chem Phys 138:124309CrossRefGoogle Scholar
  14. 14.
    Sanz-Sanz C, Roncero O, Valdés A, Prosmiti R, Delgado-Barrio G, Villarreal P, Barragán P, Aguado A (2011) Phys Rev A 84:060502CrossRefGoogle Scholar
  15. 15.
    Aguado A, Sanz-Sanz C, Villarreal P, Roncero O (2012) Phys Rev A 85:032514CrossRefGoogle Scholar
  16. 16.
    Valdés A, Barragán P, Sanz-Sanz C, Prosmiti R, Villarreal P, Delgado-Barrio G (2012a) Theor Chem Acc 131:1210CrossRefGoogle Scholar
  17. 17.
    Valdés A, Prosmiti R, Delgado-Barrio G (2012b) J Chem Phys 136:104302CrossRefGoogle Scholar
  18. 18.
    Valdés A, Prosmiti R, Delgado-Barrio G (2012c) J Chem Phys 137:214308CrossRefGoogle Scholar
  19. 19.
    Valdés A, Prosmiti R (2013) J Phys Chem A. doi: 10.1021/jp3121947
  20. 20.
    Okumura M, Yeh LI, Lee YT (1985) J Chem Phys 83:3705CrossRefGoogle Scholar
  21. 21.
    Okumura M, Yeh LI, Lee YT (1988) J Chem Phys 88:79CrossRefGoogle Scholar
  22. 22.
    Young JW, Cheng TC, Bandyopadhyay B, Duncan MA (2013) J Phys Chem A 117:6984CrossRefGoogle Scholar
  23. 23.
    Barbatti M, Nascimento MAC (2003) J Chem Phys 119:5444CrossRefGoogle Scholar
  24. 24.
    Barragán P, Prosmiti R, Wang Y, Bowman JM (2012) J Chem Phys 136:224302CrossRefGoogle Scholar
  25. 25.
    Barragán P, Pérez de Tudela R, Qu C, Prosmiti R, Bowman JM (2013) J Chem Phys 139:024308CrossRefGoogle Scholar
  26. 26.
    Bennett SL, Field FH (1972) J Am Chem Soc 94:8669CrossRefGoogle Scholar
  27. 27.
    Hiraoka K, Kebarle P (1975) J Chem Phys 62:2267CrossRefGoogle Scholar
  28. 28.
    Beuhler RJ, Ehrenson S, Friedman L (1983) J Chem Phys 79:5982CrossRefGoogle Scholar
  29. 29.
    Hiraoka K (1987) J Chem Phys 87:4048CrossRefGoogle Scholar
  30. 30.
    Prosmiti R, Villarreal P, Delgado-Barrio G (2003) J Phys Chem A 107:4768CrossRefGoogle Scholar
  31. 31.
    Adler TB, Knizia G, Werner HJ (2007) J Chem Phys 127:221106CrossRefGoogle Scholar
  32. 32.
    Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104CrossRefGoogle Scholar
  33. 33.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  34. 34.
    Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102CrossRefGoogle Scholar
  35. 35.
    Yousaf KE, Peterson KA (2009) J Chem Phys 129:184108CrossRefGoogle Scholar
  36. 36.
    Werner HJ, Knowles PJ, Knizia G et al (2010) MOLPRO, version 2010.1, a package of ab initio programs. http://www.molpro.net
  37. 37.
    Braams BJ, Bowman JM (2009) Int Rev Phys Chem 28:577CrossRefGoogle Scholar
  38. 38.
    Wang Y, Huang X, Shepler BC, Braams BJ, Bowman JM (2011) J Chem Phys 134:094509CrossRefGoogle Scholar
  39. 39.
    Bowman JM, Carter S, Huang X (2003) Int Rev Phys Chem 22:533CrossRefGoogle Scholar
  40. 40.
    Watson JKG (1968) Mol Phys 15:479CrossRefGoogle Scholar
  41. 41.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99CrossRefGoogle Scholar
  42. 42.
    Wang Y, Bowman JM (2011) J Chem Phys 134:154510CrossRefGoogle Scholar
  43. 43.
    Liu H, Wang YM, Bowman JM (2012) J Phys Chem Lett 3:3671CrossRefGoogle Scholar
  44. 44.
    Kamarchik E, Bowman JM (2013) J Phys Chem Lett 4:2964CrossRefGoogle Scholar
  45. 45.
    Bowman JM (1978) J Chem Phys 68:608CrossRefGoogle Scholar
  46. 46.
    Bowman JM, Christoffel K, Tobin F (1979) J Phys Chem 83:905CrossRefGoogle Scholar
  47. 47.
    Christoffel KM, Bowman JM (1982) Chem Phys Lett 85:220CrossRefGoogle Scholar
  48. 48.
    Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 380:237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Cherry L. Emerson Center for Scientific ComputationEmory UniversityAtlantaUSA
  2. 2.Instituto de Física Fundamental, IFF-CSICMadridSpain

Personalised recommendations