Theoretical Chemistry Accounts

, 132:1408 | Cite as

All electron ab initio calculations on the ScTi molecule: a really hard nut to crack

Regular Article
Part of the following topical collections:
  1. Dunning Festschrift Collection

Abstract

The lightest and yet completely unexplored intermetallic ScTi system has been studied by high-level ab initio methods and quantitative basis sets. We have studied in all 21 2S+1Λ states and constructed potential energy curves at the MRCI/cc–pvQZ computational level. The ground state of the system is of 6Δ symmetry with re = 2.65 Å and De = 32.4 kcal/mol with respect to the adiabatic fragments or De0 = 10.4 kcal/mol with respect to the ground state atoms while its first excited state seems to be of 4Δ symmetry with similar bonding features lying only 3 kcal/mol higher. An exceptional feature is the rather high Mulliken charge (average value of ~0.5 e) transferred to Sc but the small calculated dipole moments.

Keywords

ScTi Ab initio Multireference 

References

  1. 1.
    Mavridis A, Harrison JF (1989) J Chem Soc Faraday Trans II(85):1391CrossRefGoogle Scholar
  2. 2.
    Mavridis A, Harrison JF (1990) J Chem Soc Faraday Trans II(86):1625Google Scholar
  3. 3.
    Sakellaris CN, Mavridis A (2012) J Chem Phys 137:034309CrossRefGoogle Scholar
  4. 4.
    Kalemos A, Mavridis A (1998) J Phys Chem A 102:5982CrossRefGoogle Scholar
  5. 5.
    Kalemos A, Mavridis A (1999) Adv Quantum Chem 32:69CrossRefGoogle Scholar
  6. 6.
    Kalemos A, Mavridis A (1999) J Phys Chem A 103:3336CrossRefGoogle Scholar
  7. 7.
    Kalemos A, Mavridis A (2000) J Chem Phys 113:2270CrossRefGoogle Scholar
  8. 8.
    Tzeli D, Mavridis A (2008) J Chem Phys 128:034309CrossRefGoogle Scholar
  9. 9.
    Kerkines ISK, Mavridis A (2000) J Phys Chem A 104:11777CrossRefGoogle Scholar
  10. 10.
    Kalemos A, Mavridis A, Harrison JF (2001) J Phys Chem A 105:755CrossRefGoogle Scholar
  11. 11.
    Kalemos A, Mavridis A (2002) J Phys Chem A 106:3905CrossRefGoogle Scholar
  12. 12.
    Tzeli D, Mavridis A (2002) J Chem Phys 116:4901CrossRefGoogle Scholar
  13. 13.
    Kerkines ISK, Pittner J, Čársky P, Mavridis A, Hubač I (2002) J Chem Phys 117:9733CrossRefGoogle Scholar
  14. 14.
    Tzeli D, Mavridis A (2003) J Chem Phys 118:4984CrossRefGoogle Scholar
  15. 15.
    Kerkines ISK, Mavridis A (2003) Collect Czech Chem Commun 68:387CrossRefGoogle Scholar
  16. 16.
    Tsouloucha A, Kerkines ISK, Mavridis A (2003) J Phys Chem A 107:6062CrossRefGoogle Scholar
  17. 17.
    Kerkines ISK, Mavridis A (2004) Mol Phys 102:2451CrossRefGoogle Scholar
  18. 18.
    Tzeli D, Mavridis A (2005) J Chem Phys 122:056101CrossRefGoogle Scholar
  19. 19.
    Kalemos A, Dunning TH Jr, Mavridis A (2005) J Chem Phys 123:014301CrossRefGoogle Scholar
  20. 20.
    Kalemos A, Dunning TH Jr, Mavridis A (2005) J Chem Phys 123:014302CrossRefGoogle Scholar
  21. 21.
    Tzeli D, Mavridis A (2005) J Phys Chem A 109:9249CrossRefGoogle Scholar
  22. 22.
    Kalemos A, Dunning TH Jr, Mavridis A (2006) J Chem Phys 124:154308CrossRefGoogle Scholar
  23. 23.
    Tzeli D, Mavridis A (2006) J Phys Chem A 110:8952CrossRefGoogle Scholar
  24. 24.
    Tzeli D, Mavridis A (2007) J Chem Phys 126:194304CrossRefGoogle Scholar
  25. 25.
    Kalemos A, Dunning TH Jr, Mavridis A (2008) J Chem Phys 129:174306CrossRefGoogle Scholar
  26. 26.
    Tzeli D, Mavridis A (2010) J Chem Phys 132:194312CrossRefGoogle Scholar
  27. 27.
    Brugh DJ, Morse MD, Kalemos A, Mavridis A (2010) J Chem Phys 133:034303CrossRefGoogle Scholar
  28. 28.
    Miliordos E, Mavridis A (2007) J Phys Chem A 111:1953CrossRefGoogle Scholar
  29. 29.
    Miliordos E, Mavridis A (2010) J Phys Chem A 114:8536CrossRefGoogle Scholar
  30. 30.
    Sakellaris CN, Papakondylis A, Mavridis A (2010) J Phys Chem A 114:9333CrossRefGoogle Scholar
  31. 31.
    Sakellaris CN, Miliordos E, Mavridis A (2011) J Chem Phys 134:234308CrossRefGoogle Scholar
  32. 32.
    Sakellaris CN, Mavridis A (2012) J Phys Chem A 116:6935CrossRefGoogle Scholar
  33. 33.
    Sakellaris CN, Mavridis A (2013) J Chem Phys 138:054308CrossRefGoogle Scholar
  34. 34.
    Koukounas C, Kardahakis S, Mavridis A (2004) J Chem Phys 120:11500CrossRefGoogle Scholar
  35. 35.
    Kardahakis S, Koukounas C, Mavridis A (2005) J Chem Phys 122:054312CrossRefGoogle Scholar
  36. 36.
    Koukounas C, Mavridis A (2008) J Phys Chem A 112:11235CrossRefGoogle Scholar
  37. 37.
    Tzeli D, Mavridis A (2000) J Phys Chem A 104:6861CrossRefGoogle Scholar
  38. 38.
    Mavridis A, Metropoulos A (1993) J Phys Chem 97:10955CrossRefGoogle Scholar
  39. 39.
    Glezakou VA, Harrison JF, Mavridis A (1996) J Phys Chem 100:13971CrossRefGoogle Scholar
  40. 40.
    Tzeli D, Mavridis A (2004) J Chem Phys 121:2646CrossRefGoogle Scholar
  41. 41.
    Kardahakis S, Mavridis A (2009) J Phys Chem A 113:6818CrossRefGoogle Scholar
  42. 42.
    Kalemos A, Kaplan IG, Mavridis A (2010) J Chem Phys 132:024309CrossRefGoogle Scholar
  43. 43.
    Camacho C, Cimiraglia R, Witek HA (2010) Phys Chem Chem Phys 12:5058CrossRefGoogle Scholar
  44. 44.
    Camacho C, Witek HA, Cimiraglia P (2010) J Chem Phys 132:224306CrossRefGoogle Scholar
  45. 45.
    Soto J, Avila FJ, Otero JC, Arenas JF (2011) Phys Chem Chem Phys 13:7230CrossRefGoogle Scholar
  46. 46.
    Camacho C, Cimiraglia R, Witek HA (2011) Phys Chem Chem Phys 13:7232CrossRefGoogle Scholar
  47. 47.
    Maxtain JM, Rezabal E, Lopez X, Ugalde JM, Gagliardi L (2008) J Chem Phys 128:194315CrossRefGoogle Scholar
  48. 48.
    Kalemos A, Mavridis A (2011) J Chem Phys 135:134302CrossRefGoogle Scholar
  49. 49.
    Tzeli D, Miranda U, Kaplan IG, Mavridis A (2008) J Chem Phys 129:154310CrossRefGoogle Scholar
  50. 50.
    Krechkivska O, Morse MD, Kalemos A, Mavridis A (2012) J Chem Phys 137:054302CrossRefGoogle Scholar
  51. 51.
    Bunge CE, Barrientos JA, Bunge AV (1993) At Data Nucleic Data Tables 53:113CrossRefGoogle Scholar
  52. 52.
    Gutsev GL, Jena P, Rao BK, Khanna SN (2001) J Chem Phys 114:10738CrossRefGoogle Scholar
  53. 53.
    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2012). NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd2013, August 15]. National Institute of Standards and Technology, Gaithersburg, MD
  54. 54.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  55. 55.
    Balabanov N, Peterson KA (2005) J Chem Phys 123:064107CrossRefGoogle Scholar
  56. 56.
    MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A, Tarroni RJ, Thorsteinsson T, Wang MGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Laboratory of Physical ChemistryNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations