Advertisement

Theoretical Chemistry Accounts

, 132:1403 | Cite as

Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations

  • Emil Kalered
  • Henrik Pedersen
  • Erik Janzén
  • Lars Ojamäe
Regular Article
Part of the following topical collections:
  1. Modeling Chemical Vapor Deposition and Atomic Layer Deposition

Abstract

The effect chlorine addition to the gas mixture has on the surface chemistry in the chemical vapour deposition (CVD) process for silicon carbide (SiC) epitaxial layers is studied by quantum-chemical calculations of the adsorption and diffusion of SiH2 and SiCl2 on the (000-1) 4H–SiC surface. SiH2 was found to bind more strongly to the surface than SiCl2 by approximately 100 kJ mol−1 and to have a 50 kJ mol−1 lower energy barrier for diffusion on the fully hydrogen-terminated surface. On a bare SiC surface, without hydrogen termination, the SiCl2 molecule has a somewhat lower energy barrier for diffusion. SiCl2 is found to require a higher activation energy for desorption once chemisorbed, compared to the SiH2 molecule. Gibbs free energy calculations also indicate that the SiC surface may not be fully hydrogen terminated at CVD conditions since missing neighbouring pair of surface hydrogens is found to be a likely type of defect on a hydrogen-terminated SiC surface.

Keywords

Quantum-chemical calculations Density functional theory (DFT) B3LYP Chemical vapour deposition (CVD) Silicon carbide (SiC) SiCl2 SiH2 Surface reactions Adsorption Reaction path Activation energy Diffusion Hydrogen termination 

Notes

Acknowledgments

The Swedish Research Council VR, the Swedish Foundation for Strategic Research SSF and the Swedish National Supercomputer Centre NSC are gratefully acknowledged.

References

  1. 1.
    Chelnokov VE, Syrkin AL (1997) Mater Sci Eng B46:248–253CrossRefGoogle Scholar
  2. 2.
    Lebedev AA, Chelnokov VE (1999) Semiconductors 33:999–1001CrossRefGoogle Scholar
  3. 3.
    Kimoto T, Itoh A, Matsunami H (1997) Phys Status Solidi B 202:247–262CrossRefGoogle Scholar
  4. 4.
    Crippa D, Rode DL, Masi M (2001) Semicond Semimet 72:1–491CrossRefGoogle Scholar
  5. 5.
    Aylward G, Findlay T (1998) SI chemical data, 4th edn. Wiley, Australia, p 115Google Scholar
  6. 6.
    Pedersen H, Leone S, Kordina O, Henry A, Nishizawa S, Koshka Y, Janzén E (2012) Chem Rev 112:2434–2453CrossRefGoogle Scholar
  7. 7.
    Valente G, Cavallotti C, Masi M, Carrà C (2001) J Cryst Growth 230:247–257CrossRefGoogle Scholar
  8. 8.
    Nigam S, Chung HJ, Polyakov AY, Fanton MA, Weiland BE, Snyder DW, Skowronski M (2005) J Cryst Growth 284:112–122CrossRefGoogle Scholar
  9. 9.
    Veneroni A, Omarini F, Masi M (2005) Cryst Res Technol 40:967–971CrossRefGoogle Scholar
  10. 10.
    Olander J, Larsson K (2004) Thin Solid Films 458:191–196CrossRefGoogle Scholar
  11. 11.
    Olander J, Larsson K (2001) J Phys Chem B 105:7619–7623CrossRefGoogle Scholar
  12. 12.
    Wachowicz E, Kiejna A (2012) J Phys Condens Matter 24:385801CrossRefGoogle Scholar
  13. 13.
    Ellison A (1999) Silicon carbide growth by high temperature CVD techniques, Diss Thesis no 599. Linköping University, LinköpingGoogle Scholar
  14. 14.
    Schlegel HB (1982) J Comp Chem 3:214–218CrossRefGoogle Scholar
  15. 15.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  16. 16.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  17. 17.
    Bouteiller Y, Mijoule C, Nizam M, Barthelat JC, Daudey JP, Pelissier M, Silvi B (1988) Mol Phys 65:295–312CrossRefGoogle Scholar
  18. 18.
    Durand P, Barthelat JC (1975) Theor Chim Acta 38:283–302CrossRefGoogle Scholar
  19. 19.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  20. 20.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  21. 21.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian IncWallingford CT 2009Google Scholar
  24. 24.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49–56CrossRefGoogle Scholar
  25. 25.
    Peng C, Schlegel HB (1993) Israel J Chem 33:449–454CrossRefGoogle Scholar
  26. 26.
    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232CrossRefGoogle Scholar
  27. 27.
    Coffin JM, Hamilton TP, Pulay P, Hargittai I (1989) Inorg Chem 28:4092–4094CrossRefGoogle Scholar
  28. 28.
    Hermansson K, Ojamäe L (1994) “MOVIEMOL: an easy-to-use molecular display and animation program User Manual,” Report No UUIC-B19-500. Uppsala University, Institute of ChemistryGoogle Scholar
  29. 29.
    Brena B, Ojamäe L (2008) J Phys Chem C 112:13516–13523CrossRefGoogle Scholar
  30. 30.
    Trwoga PF, Kenyon AJ, Pitt CW (1998) J Appl Phys 83:3789–3794CrossRefGoogle Scholar
  31. 31.
    Choyke WJ, Hamiltgn DR, Patrick L (1964) Phys Rev 133:A1163–A1166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emil Kalered
    • 1
  • Henrik Pedersen
    • 1
  • Erik Janzén
    • 1
  • Lars Ojamäe
    • 1
  1. 1.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations