Advertisement

Theoretical Chemistry Accounts

, 132:1399 | Cite as

A dispersion-corrected density functional theory case study on ethyl acetate conformers, dimer, and molecular crystal

  • Jan Gerit Brandenburg
  • Stefan Grimme
Regular Article

Abstract

We present a dispersion-corrected density functional theory case study on recently reported apparently difficult systems (Boese et al. in Chem Phys Chem 14:799, 2013). The relative stability of the trans, gauche, and cis conformers of ethyl acetate, the dissociation energy of the (transtrans) dimer, and the structure and electronic lattice energy of the corresponding molecular crystal are calculated. We utilize the generalized gradient approximation density functionals PBE and BLYP, the hybrid functional B3LYP, and the double-hybrid functional B2PLYP. It is shown that all semilocal density functionals must be corrected for missing long-range electron correlation, a.k.a. London dispersion interaction. The performance of the ab initio dispersion correction DFT-D3 is excellent and significantly improves the results compared to the uncorrected functionals and compared to the older more empirical DFT-D2 correction. The three-body dispersion contribution to the lattice energy is 7 %, while its impact on the crystal geometry and the conformer energies is negligible. A nonlocal correction approach termed DFT-NL is also tested and shows good performance comparable to the DFT-D3 results. Overall, it is shown that dispersion-corrected density functional theory can accurately describe the properties of ethyl acetate in various states ranging from single-molecule conformers to the infinite periodic molecular crystal.

Keywords

Density functional theory Dispersion corrections Molecular conformation Crystal structure prediction 

References

  1. 1.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, New YorkCrossRefGoogle Scholar
  3. 3.
    Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Paverati R, Truhlar DG (2013) Phil Trans R Soc A, arXiv (in press). http://arxiv.org/abs/1212.0944
  5. 5.
    Kristyán S, Pulay P (1994) Chem Phys Lett 229:175CrossRefGoogle Scholar
  6. 6.
    Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134CrossRefGoogle Scholar
  7. 7.
    Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315CrossRefGoogle Scholar
  8. 8.
    Allen M, Tozer DJ (2002) J Chem Phys 117:11113CrossRefGoogle Scholar
  9. 9.
    Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Kaplan IG (2006) Intermolecular interactions. Wiley, ChichesterCrossRefGoogle Scholar
  11. 11.
    Grimme S (2011) WIREs Comput Mol Sci 1:211CrossRefGoogle Scholar
  12. 12.
    Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741CrossRefGoogle Scholar
  13. 13.
    Klimes J, Michaelides A (2012) J Chem Phys 137:120901CrossRefGoogle Scholar
  14. 14.
    Johnson ER, Mackie ID, Di Labio GA (2009) J Phys Org Chem 22:1127CrossRefGoogle Scholar
  15. 15.
    Burns LA, Vázquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107CrossRefGoogle Scholar
  16. 16.
    Brandenburg JG, Grimme S (2013) Top Curr Chem (in press) Google Scholar
  17. 17.
    Woodley SM, Catlow R (2008) Nat Mater 7:937CrossRefGoogle Scholar
  18. 18.
    Neumann MA, Leusen FJJ, Kendrick J (2008) Angew Chem Int Ed 47:2427CrossRefGoogle Scholar
  19. 19.
    Vydrov OA, Van Voorhis T (2010) J Chem Phys 133:244103CrossRefGoogle Scholar
  20. 20.
    Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) Cryst Eng Commun 10:405Google Scholar
  21. 21.
    Jacobsen H, Cavallo L (2012) Chem Phys Chem 13:562CrossRefGoogle Scholar
  22. 22.
    Nanda K, Beran G (2012) J Chem Phys 138:174106CrossRefGoogle Scholar
  23. 23.
    Wen S, Nanda K, Huang Y, Beran G (2012) Phys Chem Chem Phys 14:7578CrossRefGoogle Scholar
  24. 24.
    Otero-de-la-Roza A, Johnson ER (2012) J Chem Phys 137:054103CrossRefGoogle Scholar
  25. 25.
    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670CrossRefGoogle Scholar
  26. 26.
    Boese D, Kirchner M, Echeverria GA, Boese R (2013) Chem Phys Chem 14:799CrossRefGoogle Scholar
  27. 27.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  28. 28.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104CrossRefGoogle Scholar
  29. 29.
    Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Johnson ER, Becke AD (2006) J Chem Phys 124:174104CrossRefGoogle Scholar
  32. 32.
    Axilrod BM, Teller E (1943) J Chem Phys 11:299. doi: 10.1063/1.1723844 CrossRefGoogle Scholar
  33. 33.
    Hujo W, Grimme S (2013) J Chem Theory Comput 9:308–315CrossRefGoogle Scholar
  34. 34.
    Grimme S (2012) Chem Eur J 18(32):9955CrossRefGoogle Scholar
  35. 35.
    Grimme S (2006) Angew Chem Int Ed 45:4460CrossRefGoogle Scholar
  36. 36.
    TURBOMOLE 6.4: Ahlrichs R, Armbruster MK, Bär M, Baron HP, Bauernschmitt R, Crawford N, Deglmann P, Ehrig M, Eichkorn K, Elliott S, Furche F, Haase F, Häser M, Hättig C, Hellweg A, Horn H, Huber C, Huniar U, Kattannek M, Kölmel C, Kollwitz M, May K, Nava P, Ochsenfeld C, Öhm H, Patzelt H, Rappoport D, Rubner O, Schäfer A, Schneider U, Sierka M, Treutler O, Unterreiner B, von Arnim M, Weigend F, Weis P, Weiss H (2012) Universität Karlsruhe 2012. See also: http://www.turbomole.com
  37. 37.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  38. 38.
    Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753CrossRefGoogle Scholar
  39. 39.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283CrossRefGoogle Scholar
  40. 40.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  41. 41.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  42. 42.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  46. 46.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  47. 47.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  49. 49.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  50. 50.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  51. 51.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401CrossRefGoogle Scholar
  52. 52.
    Goerigk L, Kruse H, Grimme S (2011) Chem Phys Chem 12:3421CrossRefGoogle Scholar
  53. 53.
    Stull DR (1947) Ind Eng Chem 39:517CrossRefGoogle Scholar
  54. 54.
    Brandenburg JG, Grimme S, Jones PG, Markopoulos G, Hopf H, Cyranski MK, Kuck D (2013) Chem Eur J 19:9930CrossRefGoogle Scholar
  55. 55.
    Tkatchenko A, DiStasio RA, Car R, Scheffler M (2012) Phys Rev Lett 108:236402CrossRefGoogle Scholar
  56. 56.
    Otero-de-la-Roza A, Johnson ER (2013) J Chem Phys 138:054103CrossRefGoogle Scholar
  57. 57.
    Reckien W, Janetzko F, Peintinger MF, Bredow T (2012) J Comput Chem 33:2023CrossRefGoogle Scholar
  58. 58.
    Grimme S (2012) Chem Eur J 18:9955CrossRefGoogle Scholar
  59. 59.
    von Lilienfeld OA, Tkatchenko A (2010) J Chem Phys 132:234109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations